Analytica
Latest Publications


TOTAL DOCUMENTS

27
(FIVE YEARS 27)

H-INDEX

1
(FIVE YEARS 1)

Published By MDPI AG

2673-4532

Analytica ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 24-35
Author(s):  
Daniel Baecker ◽  
Sebastian Guenther

This communication introduces the first-time application of high-resolution continuum-source molecular absorption spectrometry (HR CS MAS) for the quantification of a peptide. The graphite furnace technique was employed and the tripeptide glutathione (GSH) served as a model compound. Based on measuring sulfur in terms of carbon monosulfide (CS), a method was elaborated to analyze aqueous solutions of GSH. The most prominent wavelength of the CS molecule occurred at 258.0560 nm and was adduced for monitoring. The methodological development covered the optimization of the pyrolysis and vaporization temperatures. These were found optimally to be 250 °C and 2250 °C, respectively. Moreover, the effect of modifiers (zirconium, calcium, magnesium, palladium) on the absorption signals was investigated. The best results were obtained after permanent coating of the graphite tube with zirconium (total amount of 400 μg) and adding a combination of palladium (10 µL, 10 g L−1) and calcium (2 µL, 1 g L−1) as a chemical modifier to the probes (10 µL). Aqueous standard samples of GSH were used for the calibration. It showed a linear range of 2.5–100 µg mL−1 sulfur contained in GSH with a correlation coefficient R2 > 0.997. The developed method exhibited a limit of detection (LOD) and quantification (LOQ) of 2.1 µg mL−1 and 4.3 µg mL−1 sulfur, respectively. The characteristic mass accounted for 5.9 ng sulfur. The method confirmed the general suitability of MAS for the analysis of an oligopeptide. Thus, this study serves as groundwork for further development in order to extend the application of classical atomic absorption spectrometry (AAS).


Analytica ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 14-23
Author(s):  
André M. Segurado ◽  
Samir M. Ahmad ◽  
Nuno R. Neng ◽  
Margarida M. Maniés-Sequeira ◽  
Helena Gaspar ◽  
...  

Synthetic cathinones are analogue compounds of the plant based stimulant cathinone. Its use, abuse, and related consumption complications have steadily increased in the last years. For this reason, there is a need for innovative analytical approaches that enable its rapid screening in biological matrices (e.g., oral fluids). The present work proposes a new analytical methodology by combining bar adsorptive microextraction followed by microliquid desorption and gas chromatography coupled to mass spectrometry (BAµE-µLD/GC-MS) for screening three synthetic cathinones (α-PVP, α-PVT, and MDPV) in oral fluids. The optimization of the BAµE-µLD/GC-MS methodology was successfully applied for the analysis of the target compounds in oral fluids. The results show average recoveries between 43.1 and 52.3% for the three synthetic cathinones. Good selectivity was also noticed. The developed methodology presents itself as an alternative tool to screen these compounds in oral fluids. To the best of our knowledge, this is the first work that combines a microextraction sorption-based technique followed by GC-MS analysis for the screening of synthetic cathinones in oral fluids.


Analytica ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Stefan John Davis ◽  
William Robert Wise ◽  
Sandro Recchia ◽  
Andrea Spinazzè ◽  
Maurizio Masi

The topic of hexavalent chromium (Cr(VI)) in leather has been debated throughout the whole supply chain for years. However, its significance has recently increased due to proposed changes in European legislation concerned with skin-sensitising substances suggesting that acceptable Cr(VI) concentrations in leather goods should be lowered from 3 mg kg−1 to 1 mg kg−1. The proposition of a stricter limit and current analytical difficulties created the need for a review of current standard test methods. The research presented in this paper investigates both the colorimetric (Part 1) and chromatographic (Part 2) methods under BS EN ISO 17075. The focus of the study was to identify possible sources of interference leading to large statistical variance in results and to define the limit of quantification with respect to the proposed new compliance limit. This study into the colorimetric method has shown that the presence of Cr(III), dyes, and proteins can be significant interferences, becoming critical at low Cr(VI) concentrations. Dilution factors worsen the problem of detecting low concentrations: a reliable quantitative detection of 0.01 mg kg−1 and 0.003 mg kg−1 Cr(VI) in solution are required at the 3 mg kg−1 and 1 mg kg−1 compliance limits in leather, respectively. BS EN ISO 17075 part 1 was shown to be incapable of reliably resolving to 3 mg kg−1 or below in leather. Part 2 shows a marked improvement in detection limits and reliability; however, data suggest that 1 mg kg−1 Cr(VI) is not reliably detectable in leather. Suggested improvements to the established test methods and a possible alternative are discussed.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 206-216
Author(s):  
Ngabo Yves Musafili ◽  
Halima Samsodien ◽  
Marique Elizabeth Aucamp

Tuberculosis (TB) remains a life-threatening infection, and it is well-known that effective TB treatment is associated with multiple drugs administered to infected patients on a daily basis. Terizidone (TZD) is an anti-TB drug used in the treatment of multi-drug resistant and extensively drug-resistant TB but presents with polyneuropathic adverse effects in some patients. To counteract these adverse effects, TZD is typically prescribed with pyridoxine (PDX), well known as Vitamin B6. As part of a pre-formulation study investigating the potential to co-formulate these two compounds, it became necessary to have a simple and reliable reversed-phase high-performance liquid chromatography (RP-HPLC) method. Optimal, simultaneous separation and detection of TZD and PDX were obtained using an isocratic mobile phase setup, consisting of ultrapure water and acetonitrile (30:70% v/v), with 1 mL glacial acetic acid added to the mobile phase mixture. A Discovery® C18, 150 × 4.6 mm, 5 μm column maintained at ambient temperature was utilized, with a detection wavelength of 260 nm. The method was validated in terms of linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), specificity, robustness, and solution stability. Validation proved this method to be acceptable and reliable for the simultaneous accurate detection and quantification of TZD and PDX.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 195-205
Author(s):  
Merve Yence ◽  
Leyla Karadurmus ◽  
Goksu Ozcelikay ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan

In this study, the electrochemical determination of Ivabradine hydrochloride (IH) was studied in detail using a glassy carbon electrode (GCE) modified with mesoporous carbon solution (MCS) and carboxylated group linked single-walled carbon nanotube (SWCNT-COOH). The developed nanosensor showed a significant effect by remarkably increasing the IH signal compared with the bare GCE. Cyclic (CV) and differential pulse voltammetric (DPV) methods were applied to perform electrochemical analysis of IH in pH 3.0 BRB solutions. The calibration plot for IH with a detection limit of 1.47 × 10−7 M was obtained using the DPV technique in the range of 1–10 µM under optimum experimental conditions. The proposed method has been validated and applied for the detection of the IH tablet. The produced nanosensor was also performed for the determination of IH in serum and urine. Excellent recoveries of 98.4%, 98.0%, and 100.2% were achieved for tablet, serum, and urine analysis, respectively.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 171-194
Author(s):  
Roberto Mandrioli ◽  
Michele Protti ◽  
Lorenzo Marincich ◽  
Laura Mercolini

The term seizures includes a wide array of different disorders with variable etiology, which currently represent one of the most important classes of neurological illnesses. As a consequence, many different antiepileptic drugs (AEDs) are currently available, exploiting different activity mechanisms and providing different levels of performance in terms of selectivity, safety, and efficacy. AEDs are currently among the psychoactive drugs most frequently involved in therapeutic drug monitoring (TDM) practices. Thus, the plasma levels of AEDs and their metabolites are monitored and correlated to administered doses, therapeutic efficacy, side effects, and toxic effects. As for any analytical endeavour, the quality of plasma concentration data is only as good as the analytical method allows. In this review, the main techniques and methods are described, suitable for the TDM of three AEDs belonging to the class of ion channel agents: ezogabine (or retigabine), lacosamide, and zonisamide. In addition to this analytical overview, data are provided, pertaining to two of the most important use cases for the TDM of antiepileptics: drug–drug interactions and neuroprotection activity studies. This review contains 146 references.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 156-170
Author(s):  
Lissete Sánchez-Magraner ◽  
Miguel de la Fuente ◽  
Charles Evans ◽  
James Miles ◽  
Ane Elexpe ◽  
...  

Melanoma is a carcinoma known to evade the host immune defenses via the downregulation of the immune response. One of the molecules involved in this mechanism is programmed cell death ligand 1 (PD-L1), which interacts with its receptor, programmed cell death protein 1 (PD-1), expressed on T cells, leading to a reduction in cytokine release and cytotoxic activity, as well as a halt in T-cell proliferation. The approved therapeutic monoclonal antibodies, such as pembrolizumab, target the PD-1/PD-L1 interaction and are revolutionizing cancer treatments. We developed an assay that provides a quantitative readout of PD-1/PD-L1 interactive states between cell membranes of human immune cells (peripheral blood mononuclear cells, PBMCs) and PD-L1-expressing samples. For this purpose, cell membrane microarrays (CMMAs) were developed from membranes isolated from a HT144 cell line and melanoma samples, and PD-L1 expression was quantified using immunofluorescence (IF). CMMAs were incubated with cell membranes of PBMCs expressing PD-1, and the interaction with PD-L1 was quantified by time-resolved Förster resonance energy transfer, in the presence and absence of pembrolizumab as a blocking drug. The developed assay was able to quantify the PD-1/PD-L1 interaction, and this engagement was disrupted in the presence of the blocking antibody. This demonstrates the potential of the method to analyze monoclonal antibody drugs, as well as the functional states of immune checkpoint regulators. Furthermore, our findings provide evidence to support the future implementation of this methodology for both drug discovery and immune system monitoring in cancer, transplantation, and inflammatory and autoimmune diseases.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 140-155
Author(s):  
Mowei Zhou ◽  
Ju Yeon Lee ◽  
Gun Wook Park ◽  
Neha Malhan ◽  
Tao Liu ◽  
...  

Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 130-139
Author(s):  
Antonio Marín-Romero ◽  
Mavys Tabraue-Chávez ◽  
Bárbara López-Longarela ◽  
Mario A. Fara ◽  
Rosario M. Sánchez-Martín ◽  
...  

Drug-induced liver injury (DILI) is a potentially fatal adverse event and a leading cause for pre- and post-marketing drug withdrawal. Several multinational DILI initiatives have now recommended a panel of protein and microRNA (miRNA) biomarkers that can detect early liver injury and inform about mechanistic basis. This manuscript describes the development of seqCOMBO, a unique combo-multiplexed assay which combines the dynamic chemical labelling approach and an antibody-dependant method on the Luminex MAGPIX system. SeqCOMBO enables a versatile multiplexing platform to perform qualitative and quantitative analysis of proteins and miRNAs in patient serum samples simultaneously. To the best of our knowledge, this is the first method to profile protein and miRNA biomarkers to diagnose DILI in a single-step assay.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 121-129
Author(s):  
Eleni Doulou ◽  
Marina Kalomiraki ◽  
Anthi Parla ◽  
Kyriaki Thermos ◽  
Nikos A. Chaniotakis ◽  
...  

Octreotide is a synthetic cyclic octapeptide analogue of somatostatin-14. It is mainly administered for the treatment of acromegaly, severe diarrhea, and neuroendocrine neoplasias. In this work, a hydrophilic interaction liquid chromatography (HILIC) method with fluorescence (FL) detection was developed and validated for the quantitation of octreotide in solutions for injection. Chromatographic separation was performed on an XBridge®-HILIC analytical column under isocratic elution with a short chromatographic run time of less than 10 min. The mobile phase consisted of ammonium bicarbonate 8.6 mM (pH 8.1)/acetonitrile 35/65 (v/v). The high sensitivity and selectivity of the fluorescence detection, with the excitation wavelength (λexcitation) set at 280 nm and the emission wavelength set at (λemission) 330 nm, enabled a simple sample preparation procedure that included only dilution steps. The calibration curve showed good linearity with a correlation coefficient greater than 0.998. The method was successfully applied to the analysis of commercially available octreotide injection forms.


Sign in / Sign up

Export Citation Format

Share Document