scholarly journals A Modified Comprehensive Model for Piezoelectric Stack Actuators and Corresponding Parameter Identification Method

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Haigen Yang ◽  
Wei Zhu

In order to accurately model the hysteresis and dynamic characteristics of piezoelectric stack actuators (PSAs), consider that a linear force and a hysteresis force will be generated by piezoelectric wafers under the voltage applied to a PSA, and the total force suffering from creep will result in the forced vibration of the two-degree-of-freedom mass-spring-damper system composed of the equivalent mass, stiffness, and damping of the piezoelectric wafers and the bonding layers. A modified comprehensive model for PSAs is put forward by using a linear function, an asymmetrical Bouc-Wen hysteresis operator, and a creep function to model the linear force, the hysteresis force, and the creep characteristics, respectively. In this way, the effect of the bonding layers on the hysteresis and dynamic characteristics of PSAs can be analyzed via the modified comprehensive model. The experimental results show that the modified comprehensive model for PSAs with the corresponding parameter identification method can accurately portray the hysteresis and dynamic characteristics of PSAs fabricated by different layering/stacking processes. Finally, the theoretical analyzing on utilizing the modified comprehensive model to linearize the hysteresis characteristics and design the dynamic characteristics of PSAs is given.

Author(s):  
Y-W Lee ◽  
C-W Lee

Dynamic characteristics of a prototype active engine mount (AEM), designed on the basis of a hydraulic engine mount, have been investigated and an adaptive controller for the AEM has been designed. An equivalent mass-spring-damper AEM model is proposed, and the transfer function that describes the dynamic characteristics of the AEM is deduced from mathematical analysis of the model. The damping coefficient of the model is derived by considering the non-linear flow effect in the inertia track. Experiments confirmed that the model precisely describes the dynamic characteristics of the AEM. An adaptive controller using the filtered-X LMS algorithm is designed to cancel the force transmitted through the AEM. The stability of the LMS algorithm is guaranteed by using the secondary path transfer function derived on the basis of the dynamic model of the AEM. The performance test in the laboratory shows that the AEM system is capable of significantly reducing the force transmitted through the AEM.


2014 ◽  
Vol 988 ◽  
pp. 332-337
Author(s):  
Hong Yun Wang ◽  
Xiang Kun Zeng ◽  
Ji Yong Zhao

Tensioners play a predominant role in the dynamic behavior of serpentine belt drive systems. The experimental set-up was carried out to study the dynamic characteristics of tensioner. Experimental results illustrate that tensioner shows hysteresis nonlinear dynamic characteristics, and dynamic stiffness and damping of slip motion of up stroke of tensioner are related to excitation frequency and amplitude. The first differential nonlinear model of tensioner was determined, and the parameter identification method of the model was introduced. The accurate of the nonlinear model and effectiveness of the parameter identification method was validated.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055302
Author(s):  
Yong Zhu ◽  
Guangpeng Li ◽  
Shengnan Tang ◽  
Wanlu Jiang ◽  
Zhijian Zheng

Sign in / Sign up

Export Citation Format

Share Document