scholarly journals Average Consensus in Networks of Neutral Dynamical Agents with Fixed and Switching Topologies

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yingying Wu ◽  
Yuangong Sun

This paper addresses the average consensus problem of neutral multiagent systems in undirected networks with fixed and switching topologies. For the case of fixed topology, necessary and sufficient conditions to average consensus are established by decoupling the neutral multiagent system in terms of the eigenvalues of the Laplacian matrix. For the case of switching topology, sufficient conditions to average consensus are given in terms of linear matrix inequalities to determine the allowable upper bound of the time-varying communication delay. Finally, two examples are worked out to explain the effectiveness of the theoretical results.

2018 ◽  
Vol 41 (3) ◽  
pp. 828-841 ◽  
Author(s):  
Hong-Xiao Zhang ◽  
Li Ding ◽  
Zhi-Wei Liu

In the paper, schooling problems based on containment control in multi-agent systems that have static or dynamic leaders under directed and undirected communication topologies are investigated. We propose a periodic impulsive containment control algorithm to realize schooling in multi-agent systems. Both ideal and quantized relative state measurements are considered under this framework. Some necessary and sufficient conditions, which depend on the eigenvalues of the Laplacian matrix that is associated with the communication graph, the impulsive period as well as the gain parameters, are obtained to realize the containment control of schooling. Finally, some numerical simulations are illustrated to verify the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yanfen Cao ◽  
Yuangong Sun

We investigate consensus problem for third-order multiagent dynamical systems in directed graph. Necessary and sufficient conditions to consensus of third-order multiagent systems have been established under three different protocols. Compared with existing results, we focus on the relationship between the scaling strengths and the eigenvalues of the involved Laplacian matrix, which guarantees consensus of third-order multiagent systems. Finally, some simulation examples are given to illustrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Zhi-Hong Guan ◽  
Hong Zhou

This paper studied the consensus problem of the leader-following multiagent system. It is assumed that the state information of the leader is only available to a subset of followers, while the communication among agents occurs at sampling instant. To achieve leader-following consensus, a class of distributed impulsive control based on sampling information is proposed. By using the stability theory of impulsive systems, algebraic graph theory, and stochastic matrices theory, a necessary and sufficient condition for fixed topology and sufficient condition for switching topology are obtained to guarantee the leader-following consensus of the multiagent system. It is found that leader-following consensus is critically dependent on the sampling period, control gains, and interaction graph. Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach and the correctness of theoretical analysis.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2017 ◽  
Vol 40 (5) ◽  
pp. 1521-1528
Author(s):  
Yan Wang ◽  
Hong Zhou ◽  
Zhi-Wei Liu ◽  
Wenshan Hu ◽  
Wei Wang

In this paper, a new kind of intermittent control is proposed to study consensus problems of multi-agent systems with second-order dynamics. In particular, we consider the case that the information transmission occurs at sampling instants and the velocity information is not available for feedback. The proposed control only regulates the velocity of agents in a given sequence of disconnected time intervals, called activated intervals, after sampling instants. Remarkably, both the sampling and activated intervals are not required to be identical. By adopting algebraic graph theory and nonnegative matrix, some sufficient conditions are obtained for guaranteeing the consensus of the multi-agent systems under the switching topology. Finally, the numerical examples are included to illustrate the theoretical results.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yujuan Han ◽  
Wenlian Lu ◽  
Tianping Chen ◽  
Changkai Sun

This paper investigates how to choose pinned node set to maximize the convergence rate of multiagent systems under digraph topologies in cases of sufficiently small and large pinning strength. In the case of sufficiently small pinning strength, perturbation methods are employed to derive formulas in terms of asymptotics that indicate that the left eigenvector corresponding to eigenvalue zero of the Laplacian measures the importance of node in pinning control multiagent systems if the underlying network has a spanning tree, whereas for the network with no spanning trees, the left eigenvectors of the Laplacian matrix corresponding to eigenvalue zero can be used to select the optimal pinned node set. In the case of sufficiently large pinning strength, by the similar method, a metric based on the smallest real part of eigenvalues of the Laplacian submatrix corresponding to the unpinned nodes is used to measure the stabilizability of the pinned node set. Different algorithms that are applicable for different scenarios are develped. Several numerical simulations are given to verify theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Xuefei Wu ◽  
Chen Xu

This paper investigates the mean-square exponential synchronization issues of delayed stochastic complex dynamical networks with switching topology and impulsive control. By using the Lyapunov functional method, impulsive control theory, and linear matrix inequality (LMI) approaches, some sufficient conditions are derived to guarantee the mean-square exponential synchronization of delay complex dynamical network with switch topology, which are independent of the network size and switch topology. Numerical simulations are given to illustrate the effectiveness of the obtained results in the end.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanhua Li ◽  
Heng Liu ◽  
Hongxing Wang

Stability and stabilization of fractional-order interval system is investigated. By adding parameters to linear matrix inequalities, necessary and sufficient conditions for stability and stabilization of the system are obtained. The results on stability check for uncertain FO-LTI systems with interval coefficients of dimensionnonly need to solve one 4n-by-4nLMI. Numerical examples are presented to shown the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document