scholarly journals Robust Stability and Stabilization of Interval Uncertain Descriptor Fractional-Order Systems with the Fractional-Orderα: The1≤α<2Case

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanhua Li ◽  
Heng Liu ◽  
Hongxing Wang

Stability and stabilization of fractional-order interval system is investigated. By adding parameters to linear matrix inequalities, necessary and sufficient conditions for stability and stabilization of the system are obtained. The results on stability check for uncertain FO-LTI systems with interval coefficients of dimensionnonly need to solve one 4n-by-4nLMI. Numerical examples are presented to shown the effectiveness of our results.

Author(s):  
XueFeng Zhang ◽  
YangQuan Chen

This paper considers the stability and stabilization of fractional order systems (FOS) with the fractional order α: 0 < α < 1 case. The equivalence between stability of fractional order systems and D–stability of a matrix A in specific region is proven. The criteria of stability and stabilization of fractional order system are presented. The conditions are expressed in terms of linear matrix inequalities (LMIs) which can be easily calculated with standard feasible solution problem in MATLAB LMI toolbox. When α = 1, the results reduce to the conditions of stability and stabilization of integer order systems. Numerical examples are given to verify the effectiveness of the criteria. With the approach proposed in this paper, we can analyze and design fractional order systems in the same way as what we do to the integer order system state-space models.


2013 ◽  
Vol 23 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Ibrahima N’Doye ◽  
Mohamed Darouach ◽  
Holger Voos ◽  
Michel Zasadzinski

Abstract This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the fractional order α belongs to 1≤α<2 and 0<α≤1, respectively. A stability analysis of the fractional-order error system is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee better convergence of the estimation error.


Author(s):  
Li Junmin ◽  
Li Yuting

This paper addresses the problems of the robust stability and stabilization for fractional order systems based on the uncertain Takagi-Sugeno fuzzy model. A sufficient and necessary condition of asymptotical stability for fractional order uncertain T-S fuzzy model is given, and a parallel distributed compensate fuzzy controller is designed to asymptotically stabilize the model. The results are obtained in terms of linear matrix inequalities. Finally, a numerical example and fractional order Van der Pol system are given to show the effectiveness of our results.


2017 ◽  
Vol 24 (16) ◽  
pp. 3676-3683 ◽  
Author(s):  
Esmat Sadat Alaviyan Shahri ◽  
Alireza Alfi ◽  
JA Tenreiro Machado

This paper studies the stability and the stabilization for a class of uncertain fractional order (FO) systems subject to input saturation. The Lipschitz condition and the Gronwall–Bellman lemma are adopted and sufficient conditions are derived to stabilize systems by designing a state feedback controller. Numerical examples demonstrate the effectiveness of the proposed method.


2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Xuefeng Zhang ◽  
Yuqing Yan

This paper is devoted to the admissibility issue of singular fractional order systems with order α ∈ ( 0 , 1 ) based on complex variables. Firstly, with regard to admissibility, necessary and sufficient conditions are obtained by strict LMI in complex plane. Then, an observer-based controller is designed to ensure system admissible. Finally, numerical examples are given to reveal the validity of the theoretical conclusions.


2020 ◽  
Vol 4 (4) ◽  
pp. 50
Author(s):  
Xuefeng Zhang ◽  
Wenkai Huang

This paper focuses on the sliding mode control (SMC) problem for a class of uncertain singular fractional order systems (SFOSs). The uncertainties occur in both state and derivative matrices. A radial basis function (RBF) neural network strategy was utilized to estimate the nonlinear terms of SFOSs. Firstly, by expanding the dimension of the SFOS, a novel sliding surface was constructed. A necessary and sufficient condition was given to ensure the admissibility of the SFOS while the system state moves on the sliding surface. The obtained results are linear matrix inequalities (LMIs), which are more general than the existing research. Then, the adaptive control law based on the RBF neural network was organized to guarantee that the SFOS reaches the sliding surface in a finite time. Finally, a simulation example is proposed to verify the validity of the designed procedures.


Sign in / Sign up

Export Citation Format

Share Document