scholarly journals Resource Selection by an Endangered Ungulate: A Test of Predator-Induced Range Abandonment

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jeffrey T. Villepique ◽  
Becky M. Pierce ◽  
Vernon C. Bleich ◽  
Aleksandra Andic ◽  
R. Terry Bowyer

We investigated influences of risk of predation by mountain lions (Puma concolor), topographic metrics at multiple scales, and vegetation, land, and snow cover on resource selection by Sierra Nevada bighorn sheep (Ovis canadensis sierrae), an endangered taxon, during winters 2002–2007, in the Sierra Nevada, California, USA. We hypothesized that those mountain ungulates would trade off rewards accrued from using critical low-elevation habitat in winter for the safety of areas with reduced risk of predation. Sierra Nevada bighorn sheep did not trade off benefits of forage for reduced risk of predation but selected areas of high solar radiation, a correlate of vegetation productivity, where risk of predation by mountain lions was greatest, while mitigating indirect risk of predation by selecting for steep, rugged terrain. Bighorn sheep selected more strongly for areas where mountain lions were active, than for low-elevation habitat in winter, likely because mountain lions were most active in those areas of bighorn sheep winter ranges overlapping ranges of mule deer (Odocoileus hemionus), where both ungulates accrued forage benefits. We demonstrated reduced benefit of migration to low elevation during drought years, providing an alternative explanation to the predator-induced abandonment hypothesis for the disuse of low-elevation winter range observed during drought years.

2021 ◽  
pp. 444-470
Author(s):  
Daniel J. Gammons ◽  
Jeffrey L. Davis ◽  
David W. German ◽  
Kristin Denryter ◽  
John D. Wehausen ◽  
...  

Translocation of animals into formerly occupied habitat is a key element of the recovery plan for Sierra Nevada bighorn sheep (Ovis canadensis sierrae), which are state (California) and federally listed as endangered. However, implementing Sierra bighorn translocations is a significant conservation challenge because of the small size of the extant population and the limited number of herds available to donate translocation stock. One such herd, the Mt. Langley herd, recently became unusable as a translocation source following a substantial population decline. At the time of listing in 1999, predation by mountain lions (Puma concolor; hereafter lion) was considered a primary threat to Sierra bighorn, and since then lion predation may have continued to limit the ability of source herds to provide translocation stock. We evaluated the relationship between lion predation and ewe survival rates within three source herds of the Southern Recovery Unit, compared lion abundance and ewe survival among years of varying predation levels, provided a range of estimated times for the Mt. Langley herd to recover to its former status as a translocation source, and determined if the rates lions have been removed to mitigate Sierra bighorn predation exceeded sustainable harvest guidelines. We found compelling evidence that lion predation has impeded the recovery of Sierra bighorn by reducing survival rates of adult ewes (and consequently, population growth) and by preying upon individuals that could have otherwise been translocated. Ewe survival was poor during years of extreme predation but even during years of typical predation, survival rates were below a level needed to ensure population growth, indicating that years with little or no lion predation may be necessary for the population to grow and meet recovery goals. Because the intensity of predation was related to lion abundance, monitoring lion populations could provide managers with advance warning of periods of extreme predation. We found that following a period of particularly extreme predation, the Mt. Langley herd decreased in abundance far below the threshold needed to be considered a source of translocation stock, resulting in the loss of approximately 25% of the recovery program’s capacity for translocations. It is unclear how many years it will take for this herd to recover, but management actions to reduce lion predation are likely needed for this herd to grow to a size that can afford to donate individuals to translocation efforts in the near future, even when optimistic growth rates are assumed. We found that lion removal may also be needed to prevent predation from leading to Sierra bighorn population decline. Lion removal rates that have been implemented thus far are well below what would be needed to reduce the abundance the eastern Sierra lion population itself. We recommend continued monitoring of Sierra bighorn and sympatric lions and note that lion removal may be required to facilitate bighorn recovery for the foreseeable future.


2020 ◽  
Author(s):  
JA Dellinger ◽  
B Cristescu ◽  
J Ewanyk ◽  
DJ Gammons ◽  
D Garcelon ◽  
...  

© 2019 The Wildlife Society Wildlife agencies are generally tasked with managing and conserving species at state and local levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a given species at multiple scales to aid decision making at commensurately varied spatial and behavioral scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety of management and conservation issues. For example, they are genetically and demographically at risk in 1 region yet apparently stable and negatively affecting endangered species in another. Currently, no formal plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local mountain lion population viability and problems related to predation of endangered species. To facilitate development of a state-wide management and conservation plan, we quantified habitat selection by mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found in California. Our analyses used location data from individuals (n = 263) collared across the state from 2001–2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our analyses revealed 165,350–170,085 km2, depending on season, of suitable mountain lion habitat in California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to development. These habitat selection models will help in the development of a state-wide conservation and management plan for mountain lions in California by guiding mountain lion population monitoring through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with wildlife policy and management decisions related to depredation problems at the local scale and issues of habitat connectivity at the statewide scale. © 2019 The Wildlife Society.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241131
Author(s):  
Grant M. Harris ◽  
David R. Stewart ◽  
David Brown ◽  
Lacrecia Johnson ◽  
Jim Sanderson ◽  
...  

Managing water (e.g., catchments) to increase the abundance and distribution of game is popular in arid regions, especially throughout the southwest United States, where biologists often manage water year-round for desert bighorn sheep (Ovis canadensis nelsoni). Bighorn may visit water when predators (e.g., mountain lions [Puma concolor], coyotes [Canis latrans]) do not, suggesting that differences in species ecology or their surface water requirements influence visit timing. Alternatively, visits by desert bighorn sheep and predators may align. The former outcome identifies opportunities to improve water management by providing water when desert bighorn sheep visit most, which hypothetically may reduce predator presence, range expansion and predation, thereby supporting objectives to increase sheep abundances. Since advancing water management hinges on understanding the patterns of species visits, we identified when these three species and mule deer (Odocoileus hemionus) visited managed waters in three North American deserts (Chihuahuan, Sonoran, Mojave). We unraveled the ecological basis describing why visits occurred by associating species visits with four weather variables using multi-site, multi-species models within a Bayesian hierarchical framework (3.4 million images; 105 locations; 7/2009-12/2016). Desert bighorn sheep concentrated visits to water within 4–5 contiguous months. Mountain lions visited water essentially year-round within all deserts. Higher maximum temperature influenced visits to water, especially for desert bighorn sheep. Less long-term precipitation (prior 6-week total) raised visits for all species, and influenced mountain lion visits 3–20 times more than mule deer and 3–37 times more than sheep visits. Visits to water by prey were inconsistent predictors of visits to water by mountain lions. Our results suggest improvements to water management by aligning water provision with the patterns and ecological explanations of desert bighorn sheep visits. We exemplify a scientific approach to water management for enhancing stewardship of desert mammals, be it the southwest United States or arid regions elsewhere.


2018 ◽  
Vol 78 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Justin A. Dellinger ◽  
Eric R. Loft ◽  
Ronald C. Bertram ◽  
Donald L. Neal ◽  
Marc W. Kenyon ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254827
Author(s):  
Collin J. Peterson ◽  
Michael S. Mitchell ◽  
Nicholas J. DeCesare ◽  
Chad J. Bishop ◽  
Sarah S. Sells

In the Northern Rockies of the United States, predators like wolves (Canis lupus) and mountain lions (Puma concolor) have been implicated in fluctuations or declines in populations of game species like elk (Cervus canadensis) and mule deer (Odocoileus hemionus). In particular, local distributions of these predators may affect ungulate behavior, use of space, and dynamics. Our goal was to develop generalizable predictions of habitat selection by wolves and mountain lions across western Montana. We hypothesized both predator species would select habitat that maximized their chances of encountering and killing ungulates and that minimized their chances of encountering humans. We assessed habitat selection by these predators during summer using within-home range (3rd order) resource selection functions (RSFs) in multiple study areas throughout western Montana, and tested how generalizable RSF predictions were by applying them to out-of-sample telemetry data from separate study areas. Selection for vegetation cover-types varied substantially among wolves in different study areas. Nonetheless, our predictions of 3rd order selection by wolves were highly generalizable across different study areas. Wolves consistently selected simple topography where ungulate prey may be more susceptible to their cursorial hunting mode. Topographic features may serve as better proxies of predation risk by wolves than vegetation cover-types. Predictions of mountain lion distribution were less generalizable. Use of rugged terrain by mountain lions varied across ecosystem-types, likely because mountain lions targeted the habitats of different prey species in each study area. Our findings suggest that features that facilitate the hunting mode of a predator (i.e. simple topography for cursorial predators and hiding cover for stalking predators) may be more generalizable predictors of their habitat selection than features associated with local prey densities.


2020 ◽  
Author(s):  
JA Dellinger ◽  
B Cristescu ◽  
J Ewanyk ◽  
DJ Gammons ◽  
D Garcelon ◽  
...  

© 2019 The Wildlife Society Wildlife agencies are generally tasked with managing and conserving species at state and local levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a given species at multiple scales to aid decision making at commensurately varied spatial and behavioral scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety of management and conservation issues. For example, they are genetically and demographically at risk in 1 region yet apparently stable and negatively affecting endangered species in another. Currently, no formal plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local mountain lion population viability and problems related to predation of endangered species. To facilitate development of a state-wide management and conservation plan, we quantified habitat selection by mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found in California. Our analyses used location data from individuals (n = 263) collared across the state from 2001–2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our analyses revealed 165,350–170,085 km2, depending on season, of suitable mountain lion habitat in California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to development. These habitat selection models will help in the development of a state-wide conservation and management plan for mountain lions in California by guiding mountain lion population monitoring through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with wildlife policy and management decisions related to depredation problems at the local scale and issues of habitat connectivity at the statewide scale. © 2019 The Wildlife Society.


2011 ◽  
Vol 2 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Ashwin Naidu ◽  
Lindsay A. Smythe ◽  
Ron W. Thompson ◽  
Melanie Culver

Abstract Recent records of mountain lions Puma concolor and concurrent declines in desert bighorn sheep Ovis canadensis mexicana on Kofa National Wildlife Refuge in Arizona, United States, have prompted investigations to estimate the number of mountain lions occurring there. We performed noninvasive genetic analyses and identified species, individuals, and sex from scat samples collected from the Kofa and Castle Dome Mountains. From 105 scats collected, we identified a minimum of 11 individual mountain lions. These individuals consisted of six males, two females and three of unknown sex. Three of the 11 mountain lions were identified multiple times over the study period. These estimates supplement previously recorded information on mountain lions in an area where they were historically considered only transient. We demonstrate that noninvasive genetic techniques, especially when used in conjunction with camera-trap and radiocollaring methods, can provide additional and reliable information to wildlife managers, particularly on secretive species like the mountain lion.


2007 ◽  
Vol 34 (2) ◽  
pp. 77 ◽  
Author(s):  
Erik Klop ◽  
Janneke van Goethem ◽  
Hans H. de Iongh

The preference of grazing herbivores to feed on grass regrowth following savanna fires rather than on unburnt grass swards is widely recognised. However, there is little information on which factors govern patterns of resource selection within burnt areas. In this study, we attempted to disentangle the effects of different habitat and grass sward characteristics on the utilisation of post-fire regrowth by nine species of ungulates in a fire-dominated woodland savanna in north Cameroon. We used resource-selection functions based on logistic regression. Overall, the resource-selection functions identified the time elapsed since burning as the most influential parameter in determining probability of use by ungulates, as most species strongly selected swards that were recently burned. This pattern might be related to nutrient levels in the grass sward. In addition, most species selected areas with high grass cover and avoided grass swards with high amounts of dead stem material. This is likely to increase bite mass and, hence, intake rates. The avoidance of high tree cover by some species may suggest selection for open areas with good visibility and, hence, reduced risk of predation. Body mass seemed to have no effect on differential selection of post-fire regrowth, irrespective of feeding style.


Author(s):  
Audra A. Huffmeyer ◽  
Jeff A. Sikich ◽  
T. Winston Vickers ◽  
Seth P.D. Riley ◽  
Robert K. Wayne

Sign in / Sign up

Export Citation Format

Share Document