scholarly journals Accuracy, Robustness, and Efficiency of the Linear Boundary Condition for the Black-Scholes Equations

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Darae Jeong ◽  
Seungsuk Seo ◽  
Hyeongseok Hwang ◽  
Dongsun Lee ◽  
Yongho Choi ◽  
...  

We briefly review and investigate the performance of various boundary conditions such as Dirichlet, Neumann, linear, and partial differential equation boundary conditions for the numerical solutions of the Black-Scholes partial differential equation. We use a finite difference method to numerically solve the equation. To show the efficiency of the given boundary condition, several numerical examples are presented. In numerical test, we investigate the effect of the domain sizes and compare the effect of various boundary conditions with pointwise error and root mean square error. Numerical results show that linear boundary condition is accurate and efficient among the other boundary conditions.

2020 ◽  
Vol 13 (13) ◽  
pp. 55-61
Author(s):  
Kedar Nath Uprety ◽  
Ganesh Prasad Panday

Numerical methods form an important part of the pricing of financial derivatives where there is no closed form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and Put) as well as American options with dividends. We have used different approximate to discretize the partial differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation (SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing have also been considered.


1973 ◽  
Vol 73 (1) ◽  
pp. 157-165 ◽  
Author(s):  
R. E. Scraton

AbstractAn approximation is found to the solution of the partial differential equationin the region −1 ≤ x ≤ 1, t > 0, where u satisfies a general linear boundary condition on x = ± 1. This approximation is a polynomial in x, and is an exact solution of a perturbed form of the differential equation. By choosing the perturbation appropriately, this approach is mathematically equivalent to some recent methods for solving the differential equation in the form of a Chebyshev series. Better approximations to the required solution (and particularly to the eigenvalues) are obtained by choosing the perturbation to satisfy a least squares criterion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Takuya Nakagawa ◽  
Akihiro Tanaka

Abstract The aim of this paper is to study the simulation of the expectation for the solution of linear stochastic partial differential equation driven by the space-time white noise with the bounded measurable coefficient and different boundary conditions. We first propose a Monte Carlo type method for the expectation of the solution of a linear stochastic partial differential equation and prove an upper bound for its weak rate error. In addition, we prove the central limit theorem for the proposed method in order to obtain confidence intervals for it. As an application, the Monte Carlo scheme applies to the stochastic heat equation with various boundary conditions, and we provide the result of numerical experiments which confirm the theoretical results in this paper.


Author(s):  
Dumitru I. Caruntu ◽  
Ion Stroe

This papers deals with nonlinear vibrations of non-uniform beams with geometrical nonlinearities such as moderately large curvatures, and inertia nonlinearities such as longitudinal and rotary inertia forces. The nonlinear fourth-order partial-differential equation describing the above nonlinear effects is presented. Using the method of multiple scales, each effect is found by reducing the nonlinear partial-differential equation of motion to two simpler linear partial-differential equations, homogeneous and nonhomogeneous. These equations along with given boundary conditions are analytically solved obtaining so-called zero-and first-order approximations of the beam’s nonlinear frequencies. Since the effect of mid-plane stretching is ignored, any boundary conditions could be considered as long as the supports are not fixed a constant distance apart. Analytical expressions showing the influence of these three nonlinearities on beam’s frequencies are presented up to some constant coefficients. These coefficients depend on the geometry of the beam. This paper can be used to study these influences on frequencies of different classes of beams. However, numerical results are presented for uniform beams. These results show that as beam slenderness increases the effect of these nonlinearities decreases. Also, they show that the most important nonlinear effect is due to moderately large curvature for slender beams.


Sign in / Sign up

Export Citation Format

Share Document