scholarly journals An Existence Theorem for Fractionalq-Difference Inclusions with Nonlocal Substrip Type Boundary Conditions

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

By employing a nonlinear alternative for contractive maps, we investigate the existence of solutions for a boundary value problem of fractionalq-difference inclusions with nonlocal substrip type boundary conditions. The main result is illustrated with the aid of an example.

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


2018 ◽  
Vol 1 (1) ◽  
pp. 56-80
Author(s):  
Assia Guezane-Lakoud ◽  
Kheireddine Belakroum

AbstractThis paper deals with the existence of solutions for a class of boundary value problem (BVP) of fractional differential equation with three point conditions via Leray-Schauder nonlinear alternative. Moreover, the existence of nonnegative solutions is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ammar Khanfer ◽  
Lazhar Bougoffa

The boundary value problem of a fourth-order beam equation u 4 = λ f x , u , u ′ , u ″ , u ′ ′ ′ , 0 ≤ x ≤ 1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u 0 = u ′ 0 = ∫ 0 1 p x u x d x , u ″ 1 = u ′ ′ ′ 1 = ∫ 0 1 q x u ″ x d x , where p , q ∈ L 1 0 , 1 , and f is continuous on 0 , 1 × 0 , ∞ × 0 , ∞ × − ∞ , 0 × − ∞ , 0 .


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 129 ◽  
Author(s):  
Thenmozhi Shanmugam ◽  
Marudai Muthiah ◽  
Stojan Radenović

In this work, we investigate the existence of solutions for the particular type of the eighth-order boundary value problem. We prove our results using classical version of Leray–Schauder nonlinear alternative fixed point theorem. Also we produce a few examples to illustrate our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

This paper studies the existence of solutions for a boundary value problem of nonlinear fractional hybrid differential inclusions by using a fixed point theorem due to Dhage (2006). The main result is illustrated with the aid of an example.


2016 ◽  
Vol 22 (1) ◽  
Author(s):  
Oleg A. Repin ◽  
Svetlana K. Kumykova

AbstractThe paper is devoted to the study of a boundary-value problem for an equation of mixed type with generalized operators of fractional differentiation in boundary conditions. We prove uniqueness of solutions under some restrictions on the known functions and on the different orders of the operators of generalized fractional differentiation appearing in the boundary conditions. Existence of solutions is proved by reduction to a Fredholm equation of the second kind, for which solvability follows from the uniqueness of the solution of our original problem.


Author(s):  
Р.Х. Макаова

В работе исследована краевая задача со смещением для гиперболического уравнения третьего порядка, которая содержит производную в граничных условиях. Доказана теорема единственности и существования регулярного решения исследуемой задачи. The paper investigates a boundary value problem with a shift for a third-order hyperbolic equation, which contains a derivative in the boundary conditions. A uniqueness and existence theorem for a regular solution of the problem under study is proved.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3161-3173
Author(s):  
Dondu Oz ◽  
Ilkay Karaca

This paper investigates the existence of positive solutions for m-point p-Laplacian fractional boundary value problem involving Riemann Liouville fractional integral boundary conditions on the half line via the Leray-Schauder Nonlinear Alternative theorem and the use and some properties of the Green function. As an application, an example is presented to demonstrate our main result.


Sign in / Sign up

Export Citation Format

Share Document