scholarly journals Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Jalil Piran ◽  
Amjad Ali ◽  
Doug Young Suh

In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET). In the proposed technique, we considered four input sensor readings (antecedents) and one output (consequent). The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

Author(s):  
Stefano Lodi ◽  
Gabriele Monti ◽  
Gianluca Moro ◽  
Claudio Sartori

This work proposes and evaluates distributed algorithms for data clustering in self-organizing ad-hoc sensor networks with computational, connectivity, and power constraints. Self-organization is essential in environments with a large number of devices, because the resulting system cannot be configured and maintained by specific human adjustments on its single components. One of the benefits of in-network data clustering algorithms is the capability of the network to transmit only relevant, high level information, namely models, instead of large amounts of raw data, also reducing drastically energy consumption. For instance, a sensor network could directly identify or anticipate extreme environmental events such as tsunami, tornado or volcanic eruptions notifying only the alarm or its probability, rather than transmitting via satellite each single normal wave motion. The efficiency and efficacy of the methods is evaluated by simulation measuring network traffic, and comparing the generated models with ideal results returned by density-based clustering algorithms for centralized systems.


2005 ◽  
Vol 1 (2) ◽  
pp. 245-252 ◽  
Author(s):  
P. Davis ◽  
A. Hasegawa ◽  
N. Kadowaki ◽  
S. Obana

We propose a method for managing the spontaneous organization of sensor activity in ad hoc wireless sensor systems. The wireless sensors exchange messages to coordinate responses to requests for sensing data, and to control the fraction of sensors which are active. This method can be used to manage a variety of sensor activities. In particular, it can be used for reducing the power consumption by battery operated devices when only low resolution sensing is required, thus increasing their operation lifetimes.


2017 ◽  
Vol 13 (3) ◽  
pp. 1-37 ◽  
Author(s):  
Pablo Peñil ◽  
Alvaro Díaz ◽  
Hector Posadas ◽  
Julio Medina ◽  
Pablo Sánchez

Sign in / Sign up

Export Citation Format

Share Document