scholarly journals An Image Denoising Method with Enhancement of the Directional Features Based on Wavelet and SVD Transforms

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Zhen Li ◽  
Xiangjun Duan ◽  
Wei Li

This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD), with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts), with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with image rotations and the enhancement of the directional features: to filter the diagonal part, one needs first to rotate it 45 degrees and rotate it back after filtering. Finally, reconstruct the image from the low-frequency part and the filtered high-frequency parts by the inverse wavelet transform to get the final denoising image. Experiments show the effectiveness of this method, compared with relevant methods.

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Min Wang ◽  
Wei Yan ◽  
Shudao Zhou

Singular value (SV) difference is the difference in the singular values between a noisy image and the original image; it varies regularly with noise intensity. This paper proposes an image denoising method using the singular value difference in the wavelet domain. First, the SV difference model is generated for different noise variances in the three directions of the wavelet transform and the noise variance of a new image is used to make the calculation by the diagonal part. Next, the single-level discrete 2-D wavelet transform is used to decompose each noisy image into its low-frequency and high-frequency parts. Then, singular value decomposition (SVD) is used to obtain the SVs of the three high-frequency parts. Finally, the three denoised high-frequency parts are reconstructed by SVD from the SV difference, and the final denoised image is obtained using the inverse wavelet transform. Experiments show the effectiveness of this method compared with relevant existing methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Xiulei Wei ◽  
Ruilin Lin ◽  
Shuyong Liu ◽  
Chunhui Zhang

Chaotic data analysis is important in many areas of science and engineering. However, the chaotic signals are inevitably contaminated by complicated noise in the collection process which greatly interferes with the analysis of chaos identification. The chaotic vibration is extremely nonlinear and has a broad range of frequencies; linear filtering methods are not effective for chaotic signal noise reduction. Then an improved ensemble empirical mode decomposition (EEMD) based on singular value decomposition (SVD) and Savitzky-Golay (SG) filtering method was proposed. Firstly, the noise energy of first level intrinsic mode function (IMF) was estimated by “3σ” criterion, and then SVD was used to extract the signal details from first IMF, and the singular value was selected to reconstruct the IMF according to noise energy of the first IMF. Secondly, the remaining IMFs are divided into high frequency and low frequency components based on consecutive mean square error (CMSE), and the useful signals of high frequency components and low frequency components are extracted based on SVD and SG filtering method, respectively. The superiority of the proposed method is demonstrated with simulated signal, two-degree-of-freedom chaotic vibration signals, and the experimental signals based on double potential well theory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hui Wan ◽  
Xianlun Tang ◽  
Zhiqin Zhu ◽  
Bin Xiao ◽  
Weisheng Li

Most existing multi-focus color image fusion methods based on multi-scale decomposition consider three color components separately during fusion, which leads to inherent color structures change, and causes tonal distortion and blur in the fusion results. In order to address these problems, a novel fusion algorithm based on the quaternion multi-scale singular value decomposition (QMSVD) is proposed in this paper. First, the multi-focus color images, which represented by quaternion, to be fused is decomposed by multichannel QMSVD, and the low-frequency sub-image represented by one channel and high-frequency sub-image represented by multiple channels are obtained. Second, the activity level and matching level are exploited in the focus decision mapping of the low-frequency sub-image fusion, with the former calculated by using local window energy and the latter measured by the color difference between color pixels expressed by a quaternion. Third, the fusion results of low-frequency coefficients are incorporated into the fusion of high-frequency sub-images, and a local contrast fusion rule based on the integration of high-frequency and low-frequency regions is proposed. Finally, the fused images are reconstructed employing inverse transform of the QMSVD. Simulation results show that image fusion using this method achieves great overall visual effects, with high resolution images, rich colors, and low information loss.


2021 ◽  
pp. 356-362
Author(s):  
Rajesh Patil ◽  
Surendra Bhosale

Filtering noise to recreate a high-quality image in medical image processing is an important task. During acquisition, transmission, and retrieval from storage devices, generally images are getting corrupted. So, for further analysis images must get denoised. The noises can be categorised into different types based on their nature and origin. Researchers are still looking for the effective denoising technique. Wavelet Transform (WT) is an effective transform method for denoising. Similarly Singular Value Decomposition (SVD) is also an important tool for denoising. Combining WT with SVD results in further reduction of noise. This paper proposes use of WT along with SVD for medical image denoising. Performance of image denoising is evaluated on the basis of Signal to Noise Ratio (SNR) and Peak Signal-Noise Ratio (PSNR). In the proposed approach, experimental results of WT-SVD combination gives better SNR and PSNR values than WT and SVD, if used independently.


Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 516
Author(s):  
Brinnae Bent ◽  
Baiying Lu ◽  
Juseong Kim ◽  
Jessilyn P. Dunn

A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare “data deluge,” leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the “Biosignal Data Compression Toolbox,” an open-source, accessible software platform for compressing biosignal data.


Sign in / Sign up

Export Citation Format

Share Document