scholarly journals Multi-Focus Color Image Fusion Based on Quaternion Multi-Scale Singular Value Decomposition

2021 ◽  
Vol 15 ◽  
Author(s):  
Hui Wan ◽  
Xianlun Tang ◽  
Zhiqin Zhu ◽  
Bin Xiao ◽  
Weisheng Li

Most existing multi-focus color image fusion methods based on multi-scale decomposition consider three color components separately during fusion, which leads to inherent color structures change, and causes tonal distortion and blur in the fusion results. In order to address these problems, a novel fusion algorithm based on the quaternion multi-scale singular value decomposition (QMSVD) is proposed in this paper. First, the multi-focus color images, which represented by quaternion, to be fused is decomposed by multichannel QMSVD, and the low-frequency sub-image represented by one channel and high-frequency sub-image represented by multiple channels are obtained. Second, the activity level and matching level are exploited in the focus decision mapping of the low-frequency sub-image fusion, with the former calculated by using local window energy and the latter measured by the color difference between color pixels expressed by a quaternion. Third, the fusion results of low-frequency coefficients are incorporated into the fusion of high-frequency sub-images, and a local contrast fusion rule based on the integration of high-frequency and low-frequency regions is proposed. Finally, the fused images are reconstructed employing inverse transform of the QMSVD. Simulation results show that image fusion using this method achieves great overall visual effects, with high resolution images, rich colors, and low information loss.

2020 ◽  
Vol 13 (6) ◽  
pp. 1-10
Author(s):  
ZHOU Wen-zhou ◽  
◽  
FAN Chen ◽  
HU Xiao-ping ◽  
HE Xiao-feng ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Zhen Li ◽  
Xiangjun Duan ◽  
Wei Li

This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD), with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts), with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with image rotations and the enhancement of the directional features: to filter the diagonal part, one needs first to rotate it 45 degrees and rotate it back after filtering. Finally, reconstruct the image from the low-frequency part and the filtered high-frequency parts by the inverse wavelet transform to get the final denoising image. Experiments show the effectiveness of this method, compared with relevant methods.


2018 ◽  
Vol 13 ◽  
pp. 174830181879151
Author(s):  
Qiang Yang ◽  
Huajun Wang

To solve the problem of high time and space complexity of traditional image fusion algorithms, this paper elaborates the framework of image fusion algorithm based on compressive sensing theory. A new image fusion algorithm based on improved K-singular value decomposition and Hadamard measurement matrix is proposed. This proposed algorithm only acts on a small amount of measurement data after compressive sensing sampling, which greatly reduces the number of pixels involved in the fusion and improves the time and space complexity of fusion. In the fusion experiments of full-color image with multispectral image, infrared image with visible light image, as well as multispectral image with full-color image, this proposed algorithm achieved good experimental results in the evaluation parameters of information entropy, standard deviation, average gradient, and mutual information.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Xiulei Wei ◽  
Ruilin Lin ◽  
Shuyong Liu ◽  
Chunhui Zhang

Chaotic data analysis is important in many areas of science and engineering. However, the chaotic signals are inevitably contaminated by complicated noise in the collection process which greatly interferes with the analysis of chaos identification. The chaotic vibration is extremely nonlinear and has a broad range of frequencies; linear filtering methods are not effective for chaotic signal noise reduction. Then an improved ensemble empirical mode decomposition (EEMD) based on singular value decomposition (SVD) and Savitzky-Golay (SG) filtering method was proposed. Firstly, the noise energy of first level intrinsic mode function (IMF) was estimated by “3σ” criterion, and then SVD was used to extract the signal details from first IMF, and the singular value was selected to reconstruct the IMF according to noise energy of the first IMF. Secondly, the remaining IMFs are divided into high frequency and low frequency components based on consecutive mean square error (CMSE), and the useful signals of high frequency components and low frequency components are extracted based on SVD and SG filtering method, respectively. The superiority of the proposed method is demonstrated with simulated signal, two-degree-of-freedom chaotic vibration signals, and the experimental signals based on double potential well theory.


1995 ◽  
Vol 26 (2-3) ◽  
pp. 512-517 ◽  
Author(s):  
Geraldine Teakle ◽  
Shunhua Coa ◽  
Stewart Greenhalgh

Sign in / Sign up

Export Citation Format

Share Document