scholarly journals Dynamic Output Feedback Based Active Decentralized Fault-Tolerant Control for Reconfigurable Manipulator with Concurrent Failures

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Yuanchun Li ◽  
Fan Zhou ◽  
Bo Zhao

The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC) strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI) technique, the decentralized proportional-integral observer (DPIO) is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence ofH∞fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.




Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 196
Author(s):  
Mourad Kchaou ◽  
Houssem Jerbi ◽  
Naim Ben Ali ◽  
Haitham Alsaif

In this study, we investigate the H∞ fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a γ level of the H∞ disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the H∞ admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach.



Sign in / Sign up

Export Citation Format

Share Document