scholarly journals H∞ Reliable Dynamic Output-Feedback Controller Design for Discrete-Time Singular Systems with Sensor Saturation

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 196
Author(s):  
Mourad Kchaou ◽  
Houssem Jerbi ◽  
Naim Ben Ali ◽  
Haitham Alsaif

In this study, we investigate the H∞ fault-tolerant control problem for a discrete-time singular system which is subject to external disturbances, actuator faults, and sensor saturation. By assuming that the state variable of the system is unavailable for measurement, and the actuator fault can be described by a Markovian jump process, attention is mainly focused on designing a reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the aforementioned factors on the system stability and performance. Based on the sector non-linear approach to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system is stochastically admissible with a γ level of the H∞ disturbance rejection performance. The main aim of this work is to develop a procedure for synthesizing the controller gains without any model transformation or decomposition of the output matrix. Therefore, by introducing a slack variable, the H∞ admissibility criterion is successfully transformed in terms of strict linear matrix inequalities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the proposed approach.

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Yuanchun Li ◽  
Fan Zhou ◽  
Bo Zhao

The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC) strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI) technique, the decentralized proportional-integral observer (DPIO) is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence ofH∞fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.


2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
Jinxing Lin ◽  
Chunxia Fan

This paper is concerned with the problems of exponential admissibility and dynamic output feedback (DOF) control for a class of continuous-time switched singular systems with interval time-varying delay. A full-order, dynamic, synchronously switched DOF controller is considered. First, by using the average dwell time approach, a delay-range-dependent exponential admissibility criterion for the unforced switched singular time-delay system is established in terms of linear matrix inequalities (LMIs). Then, based on this criterion, a sufficient condition on the existence of a desired DOF controller, which guarantees that the closed-loop system is regular, impulse free and exponentially stable, is proposed by employing the LMI technique. Finally, some illustrative examples are given to show the effectiveness of the proposed approach.


Author(s):  
Guoqi Ma ◽  
Xinghua Liu ◽  
Prabhakar R. Pagilla ◽  
Shuzhi Sam Ge

In this technical brief, we provide an asynchronous modified repetitive controller design to address the periodic trajectory tracking problem for switched systems with time-varying switching delays between plant modes and controllers. In the feedback channel, a dynamic output feedback mechanism is adopted. By utilizing the lifting technique, the dynamic output feedback-based switched repetitive control system is transformed into a continuous-discrete two-dimensional (2D) model to differentiate the control and learning actions involved in the repetitive controller. For the transformed 2D model, by constructing a piecewise Lyapunov functional and utilizing a matrix decomposition approach, sufficient conditions in terms of linear matrix inequalities (LMIs) and the average dwell time are developed to guarantee closed-loop exponential stability. The performance of the proposed approach is illustrated via a switched RLC series circuit example and numerical simulations are provided.


Sign in / Sign up

Export Citation Format

Share Document