scholarly journals Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Katrin Paulsen ◽  
Svantje Tauber ◽  
Claudia Dumrese ◽  
Gesine Bradacs ◽  
Dana M. Simmet ◽  
...  

Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

2020 ◽  
Vol 33 (3) ◽  
Author(s):  
Ewelina Markowska ◽  
Anna Lobaczuk-Sitnik ◽  
Malgorzata Rozanska ◽  
Emilia Duchnowska ◽  
Bozena Kosztyla-Hojna ◽  
...  

Hearing is one of the most important human senses. It is highly sensitive to any acoustic stimuli – some of them may be harmful. Hearing damage caused by noise is becoming more common these days. It affects not only adults, but also adolescents and children. It is often irreversible and may arise as a result of a single exposure to noise or during long-term occupational exposure. Noise has a strong impact on the hearing organ. It is a dangerous stimulus that damages external hair cells. Its effect may be caused by both long-term and short-term exposure. To prevent noise-induced hearing impairment, it is necessary to avoid loud acoustic stimuli. Noise is ubiquitous and sometimes we do not realize how harmful it is to our hearing. People of all ages are exposed to hearing loss caused by noise. In order to avoid or reduce the effects of noise, one should follow preventive recommendations. Noise has a huge impact on the quality of our hearing.


2020 ◽  
Vol 5 (2) ◽  
pp. 43-56 ◽  
Author(s):  
Simon L. Wuest ◽  
Tobias Plüss ◽  
Christoph Hardegger ◽  
Mario Felder ◽  
Aaron Kunz ◽  
...  

AbstractIt is not fully understood how cells detect external mechanical forces, but mechanosensitive ion channels play important roles in detecting and translating physical forces into biological responses (mechanotransduction). With the “OoClamp” device, we developed a tool to study electrophysiological processes, including the gating properties of ion channels under various gravity conditions. The “OoClamp” device uses an adapted patch clamp technique and is operational during parabolic flight and centrifugation up to 20 g. In the framework of the REXUS/BEXUS program, we have further developed the “OoClamp” device with the goal of conducting electrophysiological experiments aboard a flying sounding rocket. The aim of such an experiment was first to assess whether electrophysiological measurements of Xenopus laevis oocytes can be performed on sounding rocket flights, something that has never been done before. Second, we aimed to examine the gating properties of ion channels under microgravity conditions. The experiment was conducted in March 2016 on the REXUS 20 rocket. The post-flight analysis showed that all recording chambers were empty as the rocket reached the microgravity phase. A closer analysis of the flight data revealed that the oocytes were ripped apart a few seconds after the rocket launch. This first attempt at using sounding rockets as a research platform for electrophysiological recordings was therefore limited. Our modified “OoClamp” hardware was able to perform the necessary tasks for difficult electrophysiological recordings aboard a sounding rocket; however, the physical stresses during launch (acceleration and vibrations) did not support viability of Xenopus oocytes.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


2021 ◽  
Vol 22 (11) ◽  
pp. 6148
Author(s):  
Matteo Miceli ◽  
Silvana Casati ◽  
Pietro Allevi ◽  
Silvia Berra ◽  
Roberta Ottria ◽  
...  

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.


1998 ◽  
Vol 77 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Axel Choidas ◽  
Andreas Jungbluth ◽  
Antonio Sechi ◽  
John Murphy ◽  
Axel Ullrich ◽  
...  

Author(s):  
Galyamova K.I.

Antiphospholipid syndrome is a systemic autoimmune disease, the main part of pathogenesis of which is induc-tion of an inflammatory and procoagulant state in cells, thrombosis of venous and/or arterial vessels and, as a consequence, pregnancy complications. [4] Despite the long-term study of this pathology, the mechanism of its development is still not fully understood, what makes it more difficult to diagnose, prevent and treat this disease and to assess the risks of its complications.


2018 ◽  
Vol 10 (4) ◽  
pp. 109-134 ◽  
Author(s):  
Moritz A. Drupp ◽  
Mark C. Freeman ◽  
Ben Groom ◽  
Frikk Nesje

The economic values of investing in long-term public projects are highly sensitive to the social discount rate (SDR). We surveyed over 200 experts to disentangle disagreement on the risk-free SDR into its component parts, including pure time preference, the wealth effect, and return to capital. We show that the majority of experts do not follow the simple Ramsey Rule, a widely used theoretical discounting framework, when recommending SDRs. Despite disagreement on discounting procedures and point values, we obtain a surprising degree of consensus among experts, with more than three-quarters finding the median risk-free SDR of 2 percent acceptable. (JEL C83, D61, D82, H43, Q58)


2014 ◽  
Vol 94 (1) ◽  
pp. 33-39 ◽  
Author(s):  
D. J. Thompson ◽  
W. D. Willms

Thompson, D. J. and Willms, W. D. 2014. Effects of long-term protection from grazing on phenotypic expression in geographically separated mountain rough fescue populations. Can. J. Plant Sci. 94: 33–39. Whether or not long-term grazing or protection from grazing alters the genetic makeup of grass populations has been debated. Mountain rough fescue [(Festuca campestris (Rydb.)], which is highly sensitive to summer grazing, and becomes dominant in plant communities with long-term protection, was chosen to address this question. Plants from three geographic sites (Stavely in AB, Milroy in the Kootenay trench, BC and Goose Lake on the BC interior plateau) with divergent grazing histories were vegetatively propagated from tillers. Daughter plants were planted into two field nurseries (at Kamloops, BC, and Stavely, AB) and morphological measurements were taken in two field seasons post-establishment. Plants from all three populations were taller, flowered earlier, and were more productive at the Kamloops nursery site. Of the three geographic sources, plants from the Goose Lake site were most distinct with narrower leaves, later flowering, and greater yield. Plants with a long history of grazing had slightly shorter fertile tillers and leaves than plants with a history of long-term protection.


Sign in / Sign up

Export Citation Format

Share Document