scholarly journals Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhen-tao Qin ◽  
Wu-nian Yang ◽  
Ru Yang ◽  
Xiang-yu Zhao ◽  
Teng-jiao Yang

This paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups. We calculated the image’s sparse coefficients using the dictionary approach, which generated the sparse representation features of the remote sensing images. The sparse coefficients are then used to classify the hyperspectral images via a linear SVM. Experiments show that our proposed method of dictionary-based, clustered sparse coefficients can create better representations of hyperspectral images, with a greater overall accuracy and a Kappa coefficient.

2020 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Binge Cui ◽  
Jiandi Cui ◽  
Yan Lu ◽  
Nannan Guo ◽  
Maoguo Gong

Hyperspectral image classification methods may not achieve good performance when a limited number of training samples are provided. However, labeling sufficient samples of hyperspectral images to achieve adequate training is quite expensive and difficult. In this paper, we propose a novel sample pseudo-labeling method based on sparse representation (SRSPL) for hyperspectral image classification, in which sparse representation is used to select the purest samples to extend the training set. The proposed method consists of the following three steps. First, intrinsic image decomposition is used to obtain the reflectance components of hyperspectral images. Second, hyperspectral pixels are sparsely represented using an overcomplete dictionary composed of all training samples. Finally, information entropy is defined for the vectorized sparse representation, and then the pixels with low information entropy are selected as pseudo-labeled samples to augment the training set. The quality of the generated pseudo-labeled samples is evaluated based on classification accuracy, i.e., overall accuracy, average accuracy, and Kappa coefficient. Experimental results on four real hyperspectral data sets demonstrate excellent classification performance using the new added pseudo-labeled samples, which indicates that the generated samples are of high confidence.


2021 ◽  
Vol 13 (21) ◽  
pp. 4472
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve high classification performance. To solve the above issues, a deep spectral spatial inverted residuals network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed, which locks the effective features of each layer while avoiding network degradation. Furthermore, a global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial global context information under the condition of the same number of input and output feature maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number of experimental results show that compared with some state-of-the-art classification methods, the proposed method can provide higher classification accuracy for hyperspectral images.


2019 ◽  
Vol 39 (5) ◽  
pp. 0528004
Author(s):  
李非燕 Li Feiyan ◽  
霍宏涛 Huo Hongtao ◽  
李静 Li Jing ◽  
白杰 Bai Jie

2021 ◽  
Vol 546 ◽  
pp. 858-870
Author(s):  
Yuanshu Zhang ◽  
Yong Ma ◽  
Xiaobing Dai ◽  
Hao Li ◽  
Xiaoguang Mei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document