scholarly journals A Sparse Representation-Based Sample Pseudo-Labeling Method for Hyperspectral Image Classification

2020 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Binge Cui ◽  
Jiandi Cui ◽  
Yan Lu ◽  
Nannan Guo ◽  
Maoguo Gong

Hyperspectral image classification methods may not achieve good performance when a limited number of training samples are provided. However, labeling sufficient samples of hyperspectral images to achieve adequate training is quite expensive and difficult. In this paper, we propose a novel sample pseudo-labeling method based on sparse representation (SRSPL) for hyperspectral image classification, in which sparse representation is used to select the purest samples to extend the training set. The proposed method consists of the following three steps. First, intrinsic image decomposition is used to obtain the reflectance components of hyperspectral images. Second, hyperspectral pixels are sparsely represented using an overcomplete dictionary composed of all training samples. Finally, information entropy is defined for the vectorized sparse representation, and then the pixels with low information entropy are selected as pseudo-labeled samples to augment the training set. The quality of the generated pseudo-labeled samples is evaluated based on classification accuracy, i.e., overall accuracy, average accuracy, and Kappa coefficient. Experimental results on four real hyperspectral data sets demonstrate excellent classification performance using the new added pseudo-labeled samples, which indicates that the generated samples are of high confidence.

2021 ◽  
Vol 13 (21) ◽  
pp. 4472
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve high classification performance. To solve the above issues, a deep spectral spatial inverted residuals network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed, which locks the effective features of each layer while avoiding network degradation. Furthermore, a global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial global context information under the condition of the same number of input and output feature maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number of experimental results show that compared with some state-of-the-art classification methods, the proposed method can provide higher classification accuracy for hyperspectral images.


2018 ◽  
Vol 10 (8) ◽  
pp. 1271 ◽  
Author(s):  
Feng Gao ◽  
Qun Wang ◽  
Junyu Dong ◽  
Qizhi Xu

Hyperspectral image classification has been acknowledged as the fundamental and challenging task of hyperspectral data processing. The abundance of spectral and spatial information has provided great opportunities to effectively characterize and identify ground materials. In this paper, we propose a spectral and spatial classification framework for hyperspectral images based on Random Multi-Graphs (RMGs). The RMG is a graph-based ensemble learning method, which is rarely considered in hyperspectral image classification. It is empirically verified that the semi-supervised RMG deals well with small sample setting problems. This kind of problem is very common in hyperspectral image applications. In the proposed method, spatial features are extracted based on linear prediction error analysis and local binary patterns; spatial features and spectral features are then stacked into high dimensional vectors. The high dimensional vectors are fed into the RMG for classification. By randomly selecting a subset of features to create a graph, the proposed method can achieve excellent classification performance. The experiments on three real hyperspectral datasets have demonstrated that the proposed method exhibits better performance than several closely related methods.


2021 ◽  
Vol 13 (18) ◽  
pp. 3590
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have exhibited excellent performance in hyperspectral image classification. However, due to the lack of labeled hyperspectral data, it is difficult to achieve high classification accuracy of hyperspectral images with fewer training samples. In addition, although some deep learning techniques have been used in hyperspectral image classification, due to the abundant information of hyperspectral images, the problem of insufficient spatial spectral feature extraction still exists. To address the aforementioned issues, a spectral–spatial attention fusion with a deformable convolution residual network (SSAF-DCR) is proposed for hyperspectral image classification. The proposed network is composed of three parts, and each part is connected sequentially to extract features. In the first part, a dense spectral block is utilized to reuse spectral features as much as possible, and a spectral attention block that can refine and optimize the spectral features follows. In the second part, spatial features are extracted and selected by a dense spatial block and attention block, respectively. Then, the results of the first two parts are fused and sent to the third part, and deep spatial features are extracted by the DCR block. The above three parts realize the effective extraction of spectral–spatial features, and the experimental results for four commonly used hyperspectral datasets demonstrate that the proposed SSAF-DCR method is superior to some state-of-the-art methods with very few training samples.


2014 ◽  
Vol 687-691 ◽  
pp. 3644-3647 ◽  
Author(s):  
Li Guo Wang ◽  
Yue Shuang Yang ◽  
Ting Ting Lu

Hyperspectral image classification is difficult due to the high dimensional features but limited training samples. Tri-training learning is a widely used semi-supervised classification method that addresses the problem of lacking of labeled examples. In this paper, a novel semi-supervised learning algorithm based on tri-training method is proposed. The proposed algorithm combines margin sampling (MS) technique and differential evolution (DE) algorithm to select the most informative samples and perturb them randomly. Then the samples we obtained, which can fulfill the labeled data distribution and introduce diversity to multiple classifiers, are added to training set to train base classifiers for tri-training. The proposed algorithm is experimentally validated using real hyperspectral data sets, indicating that the combination of MS and DE can significantly reduce the need of labeled samples while achieving high accuracy compared with state-of-the-art algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhen-tao Qin ◽  
Wu-nian Yang ◽  
Ru Yang ◽  
Xiang-yu Zhao ◽  
Teng-jiao Yang

This paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups. We calculated the image’s sparse coefficients using the dictionary approach, which generated the sparse representation features of the remote sensing images. The sparse coefficients are then used to classify the hyperspectral images via a linear SVM. Experiments show that our proposed method of dictionary-based, clustered sparse coefficients can create better representations of hyperspectral images, with a greater overall accuracy and a Kappa coefficient.


Author(s):  
U. Sakarya

Hyperspectral image classification has become an important research topic in remote sensing. Because of high dimensional data, a special attention is needed dealing with spectral data; and thus, one of the research topics in hyperspectral image classification is dimension reduction. In this paper, a dimension reduction approach is presented for classification on hyperspectral images. Advantages of the usage of not only global pattern information, but also local pattern information are examined in hyperspectral image processing. In addition, not only tuning the parameters, but also an experimental analysis of the distribution of the hyperspectral data is demonstrated. Therefore, how global or local pattern variations play an important role in classification is examined. According to the experimental outcomes, the promising results are obtained for classification on hyperspectral images.


2020 ◽  
Vol 10 (21) ◽  
pp. 7740
Author(s):  
Wanghao Xu ◽  
Siqi Luo ◽  
Yunfei Wang ◽  
Youqiang Zhang ◽  
Guo Cao

In the past few years, the sparse representation (SR) graph-based semi-supervised learning (SSL) has drawn a lot of attention for its impressive performance in hyperspectral image classification with small numbers of training samples. Among these methods, the probabilistic class structure regularized sparse representation (PCSSR) approach, which introduces the probabilistic relationship between samples into the SR process, has shown its superiority over state-of-the-art approaches. However, this category of classification methods only apply another SR process to generate the probabilistic relationship, which focuses only on the spectral information but fails to utilize the spatial information. In this paper, we propose using the class adjusted spatial distance (CASD) to measure the distance between each two samples. We incorporate the proposed a CASD-based distance information into PCSSR mode to further increase the discriminability of original PCSSR approach. The proposed method considers not only the spectral information but also the spatial information of the hyperspectral data, consequently leading to significant performance improvement. Experimental results on different datasets demonstrate that compared with state-of-the-start classification models, the proposed method achieves the highest overall accuracies of 99.71%, 97.13%, and 97.07% on Botswana (BOT), Kennedy Space Center (KSC) and the truncated Indian Pines (PINE) datasets, respectively, with a small number of training samples selected from each class.


Author(s):  
T. Alipourfard ◽  
H. Arefi

Abstract. Convolutional Neural Networks (CNNs) as a well-known deep learning technique has shown a remarkable performance in visual recognition applications. However, using such networks in the area of hyperspectral image classification is a challenging and time-consuming process due to the high dimensionality and the insufficient training samples. In addition, Generative Adversarial Networks (GANs) has attracted a lot of attentions in order to generate virtual training samples. In this paper, we present a new classification framework based on integration of multi-channel CNNs and new architecture for generator and discriminator of GANs to overcome Small Sample Size (SSS) problem in hyperspectral image classification. Further, in order to reduce the computational cost, the methods related to the reduction of subspace dimension were proposed to obtain the dominant feature around the training sample to generate meaningful training samples from the original one. The proposed framework overcomes SSS and overfitting problem in classifying hyperspectral images. Based on the experimental results on real and well-known hyperspectral benchmark images, our proposed strategy improves the performance compared to standard CNNs and conventional data augmentation strategy. The overall classification accuracy in Pavia University and Indian Pines datasets was 99.8% and 94.9%, respectively.


Sign in / Sign up

Export Citation Format

Share Document