scholarly journals Intensity Sensitive Modulation Effect of Theta Burst Form of Median Nerve Stimulation on the Monosynaptic Spinal Reflex

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kuei-Lin Yeh ◽  
Po-Yu Fong ◽  
Ying-Zu Huang

The effects of electrical stimulation of median nerve with a continuous theta burst pattern (EcTBS) on the spinal H-reflex were studied. Different intensities and durations of EcTBS were given to the median nerve to 11 healthy individuals. The amplitude ratio of the H-reflex to maximum M wave (H/M ratio), corticospinal excitability and inhibition measured using motor evoked potentials (MEPs), short-interval intracortical inhibition and facilitation (SICI/ICF), spinal reciprocal inhibition (RI), and postactivation depression (PAD) were measured before and after EcTBS. In result, the H/M ratio was reduced followed by EcTBS at 90% H-reflex threshold, and the effect lasted longer after 1200 pulses than after 600 pulses of EcTBS. In contrast, EcTBS at 110% threshold facilitated the H/M ratio, while at 80% threshold it had no effect. Maximum M wave, MEPs, SICI/ICF, RI, and PAD all remained unchanged after EcTBS. In conclusion, EcTBS produced lasting effects purely on the H-reflex, probably, through effects on postsynaptic plasticity. The effect of EcTBS depends on the intensity and duration of stimulation. EcTBS is beneficial to research on mechanisms of human plasticity. Moreover, its ability to modulate spinal excitability is expected to have therapeutic benefits on neurological disorders involving spinal cord dysfunction.

2021 ◽  
Vol 15 ◽  
Author(s):  
Trevor S. Barss ◽  
David F. Collins ◽  
Dylan Miller ◽  
Amit N. Pujari

The use of upper limb vibration (ULV) during exercise and rehabilitation continues to gain popularity as a modality to improve function and performance. Currently, a lack of knowledge of the pathways being altered during ULV limits its effective implementation. Therefore, the aim of this study was to investigate whether indirect ULV modulates transmission along spinal and corticospinal pathways that control the human forearm. All measures were assessed under CONTROL (no vibration) and ULV (30 Hz; 0.4 mm displacement) conditions while participants maintained a small contraction of the right flexor carpi radialis (FCR) muscle. To assess spinal pathways, Hoffmann reflexes (H-reflexes) elicited by stimulation of the median nerve were recorded from FCR with motor response (M-wave) amplitudes matched between conditions. An H-reflex conditioning paradigm was also used to assess changes in presynaptic inhibition by stimulating the superficial radial (SR) nerve (5 pulses at 300Hz) 37 ms prior to median nerve stimulation. Cutaneous reflexes in FCR elicited by stimulation of the SR nerve at the wrist were also recorded. To assess corticospinal pathways, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation of the contralateral motor cortex were recorded from the right FCR and biceps brachii (BB). ULV significantly reduced H-reflex amplitude by 15.7% for both conditioned and unconditioned reflexes (24.0 ± 15.7 vs. 18.4 ± 11.2% Mmax; p < 0.05). Middle latency cutaneous reflexes were also significantly reduced by 20.0% from CONTROL (−1.50 ± 2.1% Mmax) to ULV (−1.73 ± 2.2% Mmax; p < 0.05). There was no significant effect of ULV on MEP amplitude (p > 0.05). Therefore, ULV inhibits cutaneous and H-reflex transmission without influencing corticospinal excitability of the forearm flexors suggesting increased presynaptic inhibition of afferent transmission as a likely mechanism. A general increase in inhibition of spinal pathways with ULV may have important implications for improving rehabilitation for individuals with spasticity (SCI, stroke, MS, etc.).


2020 ◽  
Author(s):  
Trevor S. Barss ◽  
David F. Collins ◽  
Dylan Miller ◽  
Amit N. Pujari

AbstractThe aim of this study was to investigate whether indirect upper limb vibration (ULV) modulates transmission along spinal and corticospinal pathways that control the human forearm. All measures were assessed under CONTROL (no vibration) and ULV (30 Hz; 0.4 mm displacement) conditions while participants maintained a small contraction of the right flexor carpi radialis (FCR) muscle. To assess spinal pathways, Hoffmann reflexes (H-reflexes) elicited by stimulation of the median nerve were recorded from FCR with motor response (M-wave) amplitudes matched between conditions. An H-reflex conditioning paradigm was also used to assess changes in presynaptic inhibition by stimulating the superficial radial (SR) nerve (5 pulses at 300Hz) 37 ms prior to median nerve stimulation. Cutaneous reflexes in FCR elicited by stimulation of the SR nerve at the wrist were also recorded. To assess corticospinal pathways, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation of the contralateral motor cortex were recorded from the right FCR and biceps brachii (BB). ULV significantly reduced H-reflex amplitude by 15.7% for both conditioned and unconditioned reflexes (24.0±15.7 vs 18.4±11.2 % Mmax; p<0.05). Middle latency cutaneous reflexes were also significantly reduced by 20.0% from CONTROL (−1.50 ± 2.1 % Mmax) to ULV (−1.73 ± 2.2 % Mmax; p<0.05). There was no significant effect of ULV on MEP amplitude (p>0.05). Therefore, ULV inhibits cutaneous and H-reflex transmission without influencing corticospinal excitability of the forearm flexors suggesting increased presynaptic inhibition of afferent transmission as a likely mechanism. A general increase in inhibition of spinal pathways with ULV may have important implications for improving rehabilitation for individuals with spasticity (SCI, stroke, MS, etc).


2014 ◽  
Vol 92 (10) ◽  
pp. 821-825
Author(s):  
Alyssa R. Hindle ◽  
Jenny W.H. Lou ◽  
David F. Collins

The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.


2006 ◽  
Vol 100 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Olle Lagerquist ◽  
E. Paul Zehr ◽  
David Docherty

The purpose of this study was to examine the effects of a 5-wk unilateral, isometric strength-training program on plasticity in the spinal Hoffmann (H-) reflex in both the trained and untrained legs. Sixteen participants, 22–42 yr old, were assigned to either a control ( n = 6) or an exercise group ( n = 10). Both groups were tested for plantar flexion maximal voluntary isometric contractions (MVIC) and soleus H-reflex amplitude in both limbs, at the beginning and at the end of a 5-wk interval. Participants in the exercise group showed significantly increased MVIC in both legs after training ( P < 0.05), whereas strength was unchanged in the control group for either leg. Subjects in the exercise group displayed increased ( P < 0.05) H-reflex amplitudes on the ascending limb of the recruitment curve (at an equivalent M wave of 5% of the maximal M wave, HA) only in the trained leg. Maximal H-reflex and M-wave remained unchanged with training. Increased amplitude of HA in the trained limb concurrent with increased strength suggests that spinal mechanisms may underlie the changes in strength, possibly because of increased α-motoneuronal excitability or reduced presynaptic inhibition. Despite a similar increase in strength in the contralateral limb of the exercise group, HA amplitude was unchanged. We conclude that the cross-education effect of strength training may be due to supraspinal to a greater extent than spinal mechanisms.


2003 ◽  
Vol 90 (4) ◽  
pp. 2451-2459 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Janet L. Taylor ◽  
Nicolas T. Petersen ◽  
Gabrielle Russell ◽  
Simon C. Gandevia

Motor or sensory activity in one arm can affect the other arm. We tested the hypothesis that a voluntary contraction can affect the motor pathway to the contralateral homologous muscle and investigated whether alterations in sensory input might mediate such effects. Responses to transcranial magnetic stimulation [motor-evoked potentials (MEPs)], stimulation of the descending tracts [cervicomedullary MEPs (CMEPs)], and peripheral nerve stimulation (H-reflex) were recorded from the relaxed right flexor carpi radialis (FCR), while the left arm underwent unilateral interventions (5 s duration) that included voluntary contraction, muscle contraction evoked through percutaneous stimulation, tendon vibration, and cutaneous and mixed nerve stimulation. During moderate to strong voluntary wrist flexion on the left, MEPs in the right FCR increased, CMEPs were unaffected, and the H-reflex was depressed. These results are consistent with an increase in excitability of the motor cortex, no effect on the motoneuron pool, and presynaptic inhibition of Ia afferents. In contrast, percutaneous muscle stimulation facilitated both MEPs and the H-reflex. However, muscle contraction produced by a combination of voluntary effort and electrical stimulation also reduced the contralateral H-reflex. After voluntary contractions, the H-reflex remained depressed for 35 s, but after stimulationevoked contractions, it rapidly returned to baseline. Under both conditions, MEPs recovered rapidly. After voluntary contractions, CMEPs were also depressed for approximately 10 s despite their lack of change during contractions. Wrist tendon vibration (100 Hz) did not affect, and 20-Hz median nerve stimulation or forearm medial cutaneous nerve stimulation mildly facilitated, the H-reflex without affecting MEPs. Voluntary wrist extension, similarly to wrist flexion, increased MEPs and depressed H-reflexes. However, ankle dorsiflexion facilitated the H-reflex akin to the Jendrassik maneuver. These data suggest that a unilateral voluntary muscle contraction has contralateral effects at both cortical and segmental levels and that the segmental effects are not replicated by stimulated muscle contraction or by input from muscle spindles or non-nociceptive cutaneous afferents.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mitsuhiro Nito ◽  
Natsuki Katagiri ◽  
Kaito Yoshida ◽  
Tadaki Koseki ◽  
Daisuke Kudo ◽  
...  

Repetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS. First, to examine the effects of stimulus frequency, rPMS was applied at 50, 25, and 10 Hz by setting a fixed total number of stimuli. A significant increase in MEPs of wrist extensors was observed following 50 and 25 Hz rPMS, but not 10 Hz rPMS. Next, we examined the time required to induce plasticity by increasing the number of stimuli, and found that at least 15 min of 50 and 25 Hz rPMS was required. Based on these parameters, lasting effects were evaluated following 15 min of 50 or 25 Hz rPMS. A significant increase in MEP was observed up to 60 min following 50 and 25 Hz rPMS; similarly, an attenuation of SICI and enhancement of ICF were also observed. The maximal M-wave and Hoffmann-reflex did not change, suggesting that the increase in MEP was due to plastic changes at the motor cortex. This was accompanied by increasing force and electromyograms during wrist ballistic extension movements following 50 and 25 Hz rPMS. These findings suggest that 15 min of rPMS with 25 Hz or more induces an increase in cortical excitability of the relevant area rather than altering the excitability of spinal circuits, and has the potential to improve motor output.


2021 ◽  
Vol 15 ◽  
Author(s):  
Karen M. Fisher ◽  
Stuart N. Baker

The C3–C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3–C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7–C8) rather than propriospinal (C3–C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Jiali Li ◽  
Meng Ren ◽  
Wenjing Wang ◽  
Shutian Xu ◽  
Sicong Zhang ◽  
...  

Objective. Intermittent theta burst stimulation (iTBS) is a widely used noninvasive brain stimulation for the facilitation of corticospinal excitability (CSE). Previous studies have shown that acupuncture applied to acupoints associated with motor function in healthy people can reduce the amplitude of the motor-evoked potentials (MEPs), which reflects the inhibition of CSE. In our work, we wanted to test whether the combination of iTBS and electroacupuncture (EA) would have different effects on CSE in humans. Methods. A single-blind sham-controlled crossover design study was conducted on 20 healthy subjects. Subjects received 20 minutes’ sham or real EA stimulation immediately after sham or real iTBS. MEPs, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), cortical silent period (CSP), and central motor conduction time (CMCT) were recorded before each trial, and immediately, 20 minutes, and 40 minutes after the end of stimulation. Results. In the sham iTBS group, EA produced a reduction in MEPs amplitude, lasting approximately 40 minutes, while in the real iTBS group, EA significantly increased MEPs amplitude beyond 40 minutes after the end of stimulation. In sham EA group, the recorded MEPs amplitude showed no significant trend over time compared to baseline. Among all experiments, there were no significant changes in SICI, ICF, CSP, CMCT, etc. Conclusion. These data indicate that immediate application of EA after iTBS significantly increased corticospinal excitability. This trial was registered in the Chinese Clinical Trial Registry (registration no. ChiCTR1900025348).


2010 ◽  
Vol 104 (5) ◽  
pp. 2594-2602 ◽  
Author(s):  
Lynley V. Bradnam ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

This study investigated whether repetitive transcranial magnetic stimulation (TMS) delivered as continuous theta burst stimulation (cTBS) to left M1 degraded selective muscle activation in the contralateral and ipsilateral upper limb in healthy participants. Contralateral motor-evoked potentials (cMEPs) were elicited in left and right biceps brachii (BB) before either elbow flexion or forearm pronation. A neurophysiological index, the excitability ratio (ER), was computed from the relative size of BB cMEPs before each type of movement. Short interval intracortical inhibition (SICI) was assessed in cMEPs of right BB with paired-pulse TMS of left M1. Ipsilateral MEPs (iMEPs) and silent periods (iSPs) were measured in left BB with single-pulse TMS of left M1. Low-intensity cTBS was expected to suppress corticospinal output from left M1. A sham condition was also included. Real but not sham cTBS caused increases in BB ER bilaterally. In the right arm, ER increased because BB cMEPs before flexion were less facilitated, whereas cMEPs in the pronation task were unaffected. This was accompanied by an increase in left M1 SICI. In the left arm, ER increased because BB cMEPs before pronation were facilitated but were unaffected in the flexion task. There was also facilitation of left BB iMEPs. These changes in the left arm are consistent with inappropriate facilitation of left BB α-motoneurons (αMNs) before pronation. This is the first demonstration that cTBS of M1 can alter excitability of neurons controlling ipsilateral proximal musculature and degrade ipsilateral upper limb motor control, providing evidence that ipsilateral and contralateral M1 shape the spatial and temporal characteristics of proximal muscle activation appropriate for the task at hand.


2015 ◽  
Vol 114 (1) ◽  
pp. 427-439 ◽  
Author(s):  
Hyosub E. Kim ◽  
Daniel M. Corcos ◽  
T. George Hornby

This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P < 0.001). H-reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive ( P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission.


Sign in / Sign up

Export Citation Format

Share Document