scholarly journals A Data Processing Middleware Based on SOA for the Internet of Things

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Wang ◽  
Liang Hu ◽  
Jin Zhou ◽  
Kuo Zhao

The Internet of Things (IoT) emphasizes on connecting every object around us by leveraging a variety of wireless communication technologies. Heterogeneous data fusion is widely considered to be a promising and urgent challenge in the data processing of the IoT. In this study, we first discuss the development of the concept of the IoT and give a detailed description of the architecture of the IoT. And then we design a middleware platform based on service-oriented architecture (SOA) for integration of multisource heterogeneous information. New research angle regarding flexible heterogeneous information fusion architecture for the IoT is the theme of this paper. Experiments using environmental monitoring sensor data derived from indoor environment are performed for system validation. Through the theoretical analysis and experimental verification, the data processing middleware architecture represents better adaptation to multisensor and multistream application scenarios in the IoT, which improves heterogeneous data utilization value. The data processing middleware based on SOA for the IoT establishes a solid foundation of integration and interaction for diverse networks data among heterogeneous systems in the future, which simplifies the complexity of integration process and improves reusability of components in the system.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Khizar Abbas ◽  
Lo’Ai A. Tawalbeh ◽  
Ahsan Rafiq ◽  
Ammar Muthanna ◽  
Ibrahim A. Elgendy ◽  
...  

Smart cities provide citizens with smart and advanced services to improve their quality of life. However, it has been observed that the collection, storage, processing, and analysis of heterogeneous data that are usually borne by citizens will bear certain difficulties. The development of the Internet of Things, cloud computing, social media, and other Industry 4.0 influencers pushed technology into a smart society’s framework, bringing potential vulnerabilities to sensor data, services, and smart city applications. These vulnerabilities lead to data security problems. We propose a decentralized data management system for smart and secure transportation that uses blockchain and the Internet of Things in a sustainable smart city environment to solve the data vulnerability problem. A smart transportation mobility system demands creating an interconnected transit system to ensure flexibility and efficiency. This article introduces prior knowledge and then provides a Hyperledger Fabric-based data architecture that supports a secure, trusted, smart transportation system. The simulation results show the balance between the blockchain mining time and the number of blocks created. We also use the average transaction delay evaluation model to evaluate the model and to test the proposed system’s performance. The system will address residents’ and authorities’ security challenges of the transportation system in smart, sustainable cities and lead to better governance.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1955 ◽  
Author(s):  
Klemen Kenda ◽  
Blaž Kažič ◽  
Erik Novak ◽  
Dunja Mladenić

To achieve the full analytical potential of the streaming data from the internet of things, the interconnection of various data sources is needed. By definition, those sources are heterogeneous and their integration is not a trivial task. A common approach to exploit streaming sensor data potential is to use machine learning techniques for predictive analytics in a way that is agnostic to the domain knowledge. Such an approach can be easily integrated in various use cases. In this paper, we propose a novel framework for data fusion of a set of heterogeneous data streams. The proposed framework enriches streaming sensor data with the contextual and historical information relevant for describing the underlying processes. The final result of the framework is a feature vector, ready to be used in a machine learning algorithm. The framework has been applied to a cloud and to an edge device. In the latter case, incremental learning capabilities have been demonstrated. The reported results illustrate a significant improvement of data-driven models, applied to sensor streams. Beside higher accuracy of the models the platform offers easy setup and thus fast prototyping capabilities in real-world applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dazhi Jiang ◽  
Zhihui He ◽  
Yingqing Lin ◽  
Yifei Chen ◽  
Linyan Xu

As network supporting devices and sensors in the Internet of Things are leaping forward, countless real-world data will be generated for human intelligent applications. Speech sensor networks, an important part of the Internet of Things, have numerous application needs. Indeed, the sensor data can further help intelligent applications to provide higher quality services, whereas this data may involve considerable noise data. Accordingly, speech signal processing method should be urgently implemented to acquire low-noise and effective speech data. Blind source separation and enhancement technique refer to one of the representative methods. However, in the unsupervised complex environment, in the only presence of a single-channel signal, many technical challenges are imposed on achieving single-channel and multiperson mixed speech separation. For this reason, this study develops an unsupervised speech separation method CNMF+JADE, i.e., a hybrid method combined with Convolutional Non-Negative Matrix Factorization and Joint Approximative Diagonalization of Eigenmatrix. Moreover, an adaptive wavelet transform-based speech enhancement technique is proposed, capable of adaptively and effectively enhancing the separated speech signal. The proposed method is aimed at yielding a general and efficient speech processing algorithm for the data acquired by speech sensors. As revealed from the experimental results, in the TIMIT speech sources, the proposed method can effectively extract the target speaker from the mixed speech with a tiny training sample. The algorithm is highly general and robust, capable of technically supporting the processing of speech signal acquired by most speech sensors.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4536 ◽  
Author(s):  
Yan Zhong ◽  
Simon Fong ◽  
Shimin Hu ◽  
Raymond Wong ◽  
Weiwei Lin

The Internet of Things (IoT) and sensors are becoming increasingly popular, especially in monitoring large and ambient environments. Applications that embrace IoT and sensors often require mining the data feeds that are collected at frequent intervals for intelligence. Despite the fact that such sensor data are massive, most of the data contents are identical and repetitive; for example, human traffic in a park at night. Most of the traditional classification algorithms were originally formulated decades ago, and they were not designed to handle such sensor data effectively. Hence, the performance of the learned model is often poor because of the small granularity in classification and the sporadic patterns in the data. To improve the quality of data mining from the IoT data, a new pre-processing methodology based on subspace similarity detection is proposed. Our method can be well integrated with traditional data mining algorithms and anomaly detection methods. The pre-processing method is flexible for handling similar kinds of sensor data that are sporadic in nature that exist in many ambient sensing applications. The proposed methodology is evaluated by extensive experiment with a collection of classical data mining models. An improvement over the precision rate is shown by using the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiao Xiao

The purpose of this article is to use the Internet of Things related technology to analyze the characteristics of multisource and easy-to-purchase data for the different types of planning data and different levels of cognitive needs of participants in the entire urban planning process. This paper uses the ontology idea to reconstruct the relationship between multisource and heterogeneous planning data including Internet of Things data, planning documents, and planning drawings, to design the data semantic relationship of the ontology model elements, define the relationship between the data types, and implement the ontology-based method. The semantic expression algorithm in the planning field facilitates the exchange of various planning participants’ understanding of the planning scheme, at the same time, according to the classification of multisource heterogeneous data features, logical reasoning of ontology relationships, filtering redundant information, and multisource heterogeneous planning data visualization. Finally, the information of the same nature collected by the sensor nodes of the Internet of Things is batched, and the calculated fusion information is closer to the true value through a series of weighting formulas. Experiments prove that the feature analysis method proposed in this paper can maintain a loss of 0.02% and achieve an accuracy rate of 79.1% when the overall characteristics of digital city planning are reduced by 67%, which effectively proves the multisource heterogeneous data feature analysis for digital city planning importance.


2021 ◽  
pp. 41-48
Author(s):  
Savvas Rogotis ◽  
Fabiana Fournier ◽  
Karel Charvát ◽  
Michal Kepka

AbstractThe chapter describes the key role that sensor data play in the DataBio project. It introduces the concept of sensing devices and their contribution in the evolution of the Internet of Things (IoT). The chapter outlines how IoT technologies have affected bioeconomy sectors over the years. The last part outlines key examples of sensing devices and IoT data that are exploited in the context of the DataBio project.


Sign in / Sign up

Export Citation Format

Share Document