scholarly journals Streaming Data Fusion for the Internet of Things

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1955 ◽  
Author(s):  
Klemen Kenda ◽  
Blaž Kažič ◽  
Erik Novak ◽  
Dunja Mladenić

To achieve the full analytical potential of the streaming data from the internet of things, the interconnection of various data sources is needed. By definition, those sources are heterogeneous and their integration is not a trivial task. A common approach to exploit streaming sensor data potential is to use machine learning techniques for predictive analytics in a way that is agnostic to the domain knowledge. Such an approach can be easily integrated in various use cases. In this paper, we propose a novel framework for data fusion of a set of heterogeneous data streams. The proposed framework enriches streaming sensor data with the contextual and historical information relevant for describing the underlying processes. The final result of the framework is a feature vector, ready to be used in a machine learning algorithm. The framework has been applied to a cloud and to an edge device. In the latter case, incremental learning capabilities have been demonstrated. The reported results illustrate a significant improvement of data-driven models, applied to sensor streams. Beside higher accuracy of the models the platform offers easy setup and thus fast prototyping capabilities in real-world applications.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 181 ◽  
Author(s):  
Giuliano Vitali ◽  
Matteo Francia ◽  
Matteo Golfarelli ◽  
Maurizio Canavari

In this study, we analyze how crop management will benefit from the Internet of Things (IoT) by providing an overview of its architecture and components from agronomic and technological perspectives. The present analysis highlights that IoT is a mature enabling technology with articulated hardware and software components. Cheap networked devices can sense crop fields at a finer grain to give timeliness warnings on the presence of stress conditions and diseases to a wider range of farmers. Cloud computing allows reliable storage, access to heterogeneous data, and machine-learning techniques for developing and deploying farm services. From this study, it emerges that the Internet of Things will draw attention to sensor quality and placement protocols, while machine learning should be oriented to produce understandable knowledge, which is also useful to enhance cropping system simulation systems.


Author(s):  
Saad Hikmat Haji ◽  
Siddeeq Y. Ameen

The Internet of Things (IoT) is one of today's most rapidly growing technologies. It is a technology that allows billions of smart devices or objects known as "Things" to collect different types of data about themselves and their surroundings using various sensors. They may then share it with the authorized parties for various purposes, including controlling and monitoring industrial services or increasing business services or functions. However, the Internet of Things currently faces more security threats than ever before. Machine Learning (ML) has observed a critical technological breakthrough, which has opened several new research avenues to solve current and future IoT challenges. However, Machine Learning is a powerful technology to identify threats and suspected activities in intelligent devices and networks. In this paper, various ML algorithms have been compared in terms of attack detection and anomaly detection, following a thorough literature review on Machine Learning methods and the significance of IoT security in the context of various types of potential attacks. Furthermore, possible ML-based IoT protection technologies have been introduced.


2021 ◽  
Vol 3 (3) ◽  
pp. 128-145
Author(s):  
R. Valanarasu

Recently, IoT is referred as a descriptive term for the idea that everything in the world should be connected to the internet. Healthcare and social goods, industrial automation, and energy are just a few of the areas where the Internet of Things applications are widely used. Applications are becoming smarter and linked devices are enabling their exploitation in every element of the Internet of Things [IoT]. Machine Learning (ML) methods are used to improve an application's intelligence and capabilities by analysing the large amounts of data. ML and IoT have been used for smart transportation, which has gained the increasing research interest. This research covers a range of Internet of Things (IoT) applications that use suitable machine learning techniques to enhance efficiency and reliability in the intelligent automation sector. Furthermore, this research article examines and identifies various applications such as energy, high-quality sensors associated, and G-map associated appropriate applications for IoT. In addition to that, the proposed research work includes comparisons and tabulations of several different machine learning algorithms for IoT applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Wang ◽  
Liang Hu ◽  
Jin Zhou ◽  
Kuo Zhao

The Internet of Things (IoT) emphasizes on connecting every object around us by leveraging a variety of wireless communication technologies. Heterogeneous data fusion is widely considered to be a promising and urgent challenge in the data processing of the IoT. In this study, we first discuss the development of the concept of the IoT and give a detailed description of the architecture of the IoT. And then we design a middleware platform based on service-oriented architecture (SOA) for integration of multisource heterogeneous information. New research angle regarding flexible heterogeneous information fusion architecture for the IoT is the theme of this paper. Experiments using environmental monitoring sensor data derived from indoor environment are performed for system validation. Through the theoretical analysis and experimental verification, the data processing middleware architecture represents better adaptation to multisensor and multistream application scenarios in the IoT, which improves heterogeneous data utilization value. The data processing middleware based on SOA for the IoT establishes a solid foundation of integration and interaction for diverse networks data among heterogeneous systems in the future, which simplifies the complexity of integration process and improves reusability of components in the system.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Khizar Abbas ◽  
Lo’Ai A. Tawalbeh ◽  
Ahsan Rafiq ◽  
Ammar Muthanna ◽  
Ibrahim A. Elgendy ◽  
...  

Smart cities provide citizens with smart and advanced services to improve their quality of life. However, it has been observed that the collection, storage, processing, and analysis of heterogeneous data that are usually borne by citizens will bear certain difficulties. The development of the Internet of Things, cloud computing, social media, and other Industry 4.0 influencers pushed technology into a smart society’s framework, bringing potential vulnerabilities to sensor data, services, and smart city applications. These vulnerabilities lead to data security problems. We propose a decentralized data management system for smart and secure transportation that uses blockchain and the Internet of Things in a sustainable smart city environment to solve the data vulnerability problem. A smart transportation mobility system demands creating an interconnected transit system to ensure flexibility and efficiency. This article introduces prior knowledge and then provides a Hyperledger Fabric-based data architecture that supports a secure, trusted, smart transportation system. The simulation results show the balance between the blockchain mining time and the number of blocks created. We also use the average transaction delay evaluation model to evaluate the model and to test the proposed system’s performance. The system will address residents’ and authorities’ security challenges of the transportation system in smart, sustainable cities and lead to better governance.


Author(s):  
Vusi Sithole ◽  
Linda Marshall

<span lang="EN-US">Patterns for the internet of things (IoT) which represent proven solutions used to solve design problems in the IoT are numerous. Similar to object-oriented design patterns, these IoT patterns contain multiple mutual heterogeneous relationships. However, these pattern relationships are hidden and virtually unidentified in most documents. In this paper, we use machine learning techniques to automatically mine knowledge graphs to map these relationships between several IoT patterns. The end result is a semantic knowledge graph database which outlines patterns as vertices and their relations as edges. We have identified four main relationships between the IoT patterns-a pattern is similar to another pattern if it addresses the same use case problem, a large-scale pattern uses a small- scale pattern in a lower level layer, a large pattern is composed of multiple smaller scale patterns underneath it, and patterns complement and combine with each other to resolve a given use case problem. Our results show some promising prospects towards the use of machine learning techniques to generate an automated repository to organise the IoT patterns, which are usually extracted at various levels of abstraction and granularity.</span>


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 517
Author(s):  
Flávia C. Delicato ◽  
Tayssa Vandelli ◽  
Mario Bonicea ◽  
Claudio M. de Farias

In the Internet of Things (IoT), extending the average battery duration of devices is of paramount importance, since it promotes uptime without intervention in the environment, which can be undesirable or costly. In the IoT, the system’s functionalities are distributed among devices that (i) collect, (ii) transmit and (iii) apply algorithms to process and analyze data. A widely adopted technique for increasing the lifetime of an IoT system is using data fusion on the devices that process and analyze data. There are already several works proposing data fusion algorithms for the context of wireless sensor networks and IoT. However, most of them consider that application requirements (such as the data sampling rate and the data range of the events of interest) are previously known, and the solutions are tailored for a single target application. In the context of a smart city, we envision that the IoT will provide a sensing and communication infrastructure to be shared by multiple applications, that will make use of this infrastructure in an opportunistic and dynamic way, with no previous knowledge about its requirements. In this work, we present Heracles, a new data fusion algorithm tailored to meet the demands of the IoT for smart cities. Heracles considers the context of the application, adapting to the features of the dataset to perform the data analysis. Heracles aims at minimizing data transmission to save energy while generating value-added information, which will serve as input for decision-making processes. Results of the performed evaluation show that Heracles is feasible, enhances the performance of decision methods and extends the system lifetime.


Sign in / Sign up

Export Citation Format

Share Document