scholarly journals Characterizations of N(2,2,0) Algebras

Algebra ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Fang-an Deng ◽  
Lu Chen ◽  
ShouHeng Tuo ◽  
ShengZhang Ren

The so-called ideal and subalgebra and some additional concepts of N(2,2,0) algebras are discussed. A partial order and congruence relations on N(2,2,0) algebras are also proposed, and some properties are investigated.

1966 ◽  
Vol 6 (1) ◽  
pp. 46-54 ◽  
Author(s):  
P. D. Finch

We denote lattice join and meet by ∨ and ∧ respectively and the associated partial order by ≧. A lattice L with 0 and I is said to be orthocomplemented if it admits a dual automorphism x → x′, that is a one-one mapping of L onto itself such that which is involutive, so that for each x in L and, further, is such that for each x in L.


2019 ◽  
Vol 7 (1) ◽  
pp. 424-430
Author(s):  
A. George Louis Raja ◽  
F. Sagayaraj Francis ◽  
P. Sugumar
Keyword(s):  

2020 ◽  
Vol 18 (1) ◽  
pp. 1727-1741
Author(s):  
Yoonjin Lee ◽  
Yoon Kyung Park

Abstract We study the modularity of Ramanujan’s function k ( τ ) = r ( τ ) r 2 ( 2 τ ) k(\tau )=r(\tau ){r}^{2}(2\tau ) , where r ( τ ) r(\tau ) is the Rogers-Ramanujan continued fraction. We first find the modular equation of k ( τ ) k(\tau ) of “an” level, and we obtain some symmetry relations and some congruence relations which are satisfied by the modular equations; these relations are quite useful for reduction of the computation cost for finding the modular equations. We also show that for some τ \tau in an imaginary quadratic field, the value k ( τ ) k(\tau ) generates the ray class field over an imaginary quadratic field modulo 10; this is because the function k is a generator of the field of the modular function on Γ 1 ( 10 ) {{\mathrm{\Gamma}}}_{1}(10) . Furthermore, we suggest a rather optimal way of evaluating the singular values of k ( τ ) k(\tau ) using the modular equations in the following two ways: one is that if j ( τ ) j(\tau ) is the elliptic modular function, then one can explicitly evaluate the value k ( τ ) k(\tau ) , and the other is that once the value k ( τ ) k(\tau ) is given, we can obtain the value k ( r τ ) k(r\tau ) for any positive rational number r immediately.


Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


2015 ◽  
Vol 50 (6) ◽  
pp. 250-259 ◽  
Author(s):  
Naling Zhang ◽  
Markus Kusano ◽  
Chao Wang

2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


1993 ◽  
Vol 19 (3-4) ◽  
pp. 403-416
Author(s):  
David Murphy

The purpose of this paper is to present a real-timed concurrency theory in the noninterleaving tradition. The theory is based on the occurrences of actions; each occurrence or event has a start and a finish. Causality is modelled by assigning a strict partial order to these starts and finishes, while timing is modelled by giving them reals. The theory is presented in some detail. All of the traditional notions found in concurrency theories (such as conflict, confusion, liveness, and so on) are found to be expressible. Four notions of causality arise naturally from the model, leading to notions of securing. Three of the notions give rise to underlying event structures, demonstrating that our model generalises Winskel’s. Infinite structures are then analysed: a poset of finite structures is defined and suitably completed to give one containing infinite structures. These infinite structures are characterised as just those arising as limits of finite ones. Our technique here, which relies on the structure of time, is of independent interest.


2017 ◽  
Vol 16 (2) ◽  
pp. 1-34 ◽  
Author(s):  
Béatrice Bérard ◽  
Loïc Hélouët ◽  
John Mullins
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document