scholarly journals Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Yongfeng Xu ◽  
Ming Li ◽  
Reda Hassanien Emam Hassanien

In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS) driven by distributed photovoltaic energy system (DPES) was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

Solar Energy ◽  
2017 ◽  
Vol 158 ◽  
pp. 147-160 ◽  
Author(s):  
Yongfeng Xu ◽  
Xun Ma ◽  
Reda Hassanien Emam Hassanien ◽  
Xi Luo ◽  
Guoliang Li ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Huiling Su ◽  
Qifeng Huang ◽  
Zhongdong Wang

In the context of the energy crisis and environmental deterioration, the integrated energy system (IES) based on multi-energy complementarity and cascaded utilization of energy is considered as an effective way to solve these problems. Due to the different energy forms and the various characteristics in the IES, the coupling relationships among various energy forms are complicated which enlarges the difficulty of energy efficiency evaluation of the IES. In order to flexibly analyze the energy efficiency of the IES, an operation efficiency evaluation model for the IES is established. First, energy utilization efficiency (EUE) and exergy efficiency (EXE) are proposed based on the first/second law of thermodynamics. Second, the energy efficiency models for five processes and four subsystems of the IES are formed. Lastly, an actual commercial-industrial park with integrated energy is employed to validate the proposed method.


2021 ◽  
pp. 1-18
Author(s):  
Jiahang Yuan ◽  
Yun Li ◽  
Xinggang Luo ◽  
Lingfei Li ◽  
Zhongliang Zhang ◽  
...  

Regional integrated energy system (RIES) provides a platform for coupling utilization of multi-energy and makes various energy demand from client possible. The suitable RIES composition scheme will upgrade energy structure and improve integrated energy utilization efficiency. Based on a RIES construction project in Jiangsu province, this paper proposes a new multi criteria decision-making (MCDM) method for the selection of RIES schemes. Because that subjective evaluation on RIES schemes benefit under criteria has uncertainty and hesitancy, intuitionistic trapezoidal fuzzy number (ITFN) which has the better capability to model ill-known quantities is presented. In consideration of risk attitude and interdependency of criteria, a new decision model with risk coefficients, Mahalanobis-Taguchi system and Choquet integral is proposed. Firstly, the decision matrices given by experts are normalized, and then are transformed to minimum expectation matrices according to different risk coefficients. Secondly, the weights of criteria from different experts are calculated by Mahalanobis-Taguchi system. Mobius transformation coefficients based on interaction degree are to calculate 2-order additive fuzzy measures, and then the comprehensive weights of criteria are obtained by fuzzy measures and Choquet integral. Thirdly, based on group decision consensus requirement, the weights of experts are obtained by the maximum entropy and grey correlation. Fourthly, the minimum expectation matrices are aggregated by the intuitionistic trapezoidal fuzzy Bonferroni mean operator. Thus, the ranking result according to the comparison rules using the minimum expectation and the maximum expectation is obtained. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


Author(s):  
Ming Liu ◽  
Rongtang Liu ◽  
Junjie Yan

Lignite, a kind of low rank coal, has the characteristics of high moisture, high volatile, high ash and low heat value. The low-temperature pyrolysis technology is potential to improve the utilization efficiency of lignite. Therefore, a lignite-based energy system integrated with pre-drying and low-temperature pyrolysis was proposed in this paper. To assess the influence of pre-drying process, theoretical models were developed based on thermodynamics, and a case analysis was then performed to get the quantitative effect of pre-drying on efficiency of energy utilization. Results show that pre-drying on PPPS theoretical model can significantly improve the utilization of lignite by 1.46%.Keywords: Lignite; Pre-drying; Low-temperature pyrolysis; Energy efficiency; Case analysis.   


2012 ◽  
Vol 55 ◽  
pp. 757-764 ◽  
Author(s):  
Ertaç Hürdoğan ◽  
Orhan Büyükalaca ◽  
Tuncay Yılmaz ◽  
Arif Hepbasli ◽  
İrfan Uçkan

Sign in / Sign up

Export Citation Format

Share Document