scholarly journals Approximating the Solution Stochastic Process of the Random Cauchy One-Dimensional Heat Model

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
A. Navarro-Quiles ◽  
J.-V. Romero ◽  
M.-D. Roselló ◽  
M. A. Sohaly

This paper deals with the numerical solution of the random Cauchy one-dimensional heat model. We propose a random finite difference numerical scheme to construct numerical approximations to the solution stochastic process. We establish sufficient conditions in order to guarantee the consistency and stability of the proposed random numerical scheme. The theoretical results are illustrated by means of an example where reliable approximations of the mean and standard deviation to the solution stochastic process are given.

Author(s):  
Athanasios N. Papadimopoulos ◽  
Stamatios A. Amanatiadis ◽  
Nikolaos V. Kantartzis ◽  
Theodoros T. Zygiridis ◽  
Theodoros D. Tsiboukis

Purpose Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance of real-life THz applications. This paper aims to introduce an efficient numerical algorithm that is able to accurately and rapidly predict the influence of material-based uncertainties for diverse graphene configurations. Design/methodology/approach Initially, the surface conductivity of graphene is described at the far infrared spectrum and the uncertainties of its main parameters, namely, the chemical potential and the relaxation time, on the propagation properties of the surface waves are investigated, unveiling a considerable impact. Furthermore, the demanding two-dimensional material is numerically modeled as a surface boundary through a frequency-dependent finite-difference time-domain scheme, while a robust stochastic realization is accordingly developed. Findings The mean value and standard deviation of the propagating surface waves are extracted through a single-pass simulation in contrast to the laborious Monte Carlo technique, proving the accomplished high efficiency. Moreover, numerical results, including graphene’s surface current density and electric field distribution, indicate the notable precision, stability and convergence of the new graphene-based stochastic time-domain method in terms of the mean value and the order of magnitude of the standard deviation. Originality/value The combined uncertainties of the main parameters in graphene layers are modeled through a high-performance stochastic numerical algorithm, based on the finite-difference time-domain method. The significant accuracy of the numerical results, compared to the cumbersome Monte Carlo analysis, renders the featured technique a flexible computational tool that is able to enhance the design of graphene THz devices due to the uncertainty prediction.


2019 ◽  
Vol 33 (10) ◽  
pp. 1950085
Author(s):  
Xian-Qing Yang ◽  
Yao Yang ◽  
Yang Jiao ◽  
Wei Zhang

In this paper, both the fifth-order Runge–Kutta numerical scheme and binary collision approximation are used to study the phase shift. Both numerical and theoretical results are shown that the solitary wave after head-on collision propagates along the chain behind the reference wave in both even and odd numbers of grain chains. It is the well-known feature of the appearance of the phase shift. Those results are in agreement with the experimental results. Furthermore, it is found that the phase shift is not only related to the collision position of the waves, but also to the position where the time is measured. The value of phase shift increases nonmonotonously with increasing the velocity of the opposite propagation of the wave. Binary collision approximation is applied to analyze the phase shift, and it is found that theoretical results agree well with numerical results, especially in the case of phase shift in odd chain.


2018 ◽  
Vol 23 (1) ◽  
pp. 79-100 ◽  
Author(s):  
Maria-Consuelo Casaban ◽  
Juan-Carlos Cortes ◽  
Lucas Jodar

This paper deals with the construction of mean square analytic-numerical solution of parabolic partial differential problems where both initial condition and coefficients are stochastic processes. By using a random Fourier transform, an inf- nite integral form of the solution stochastic process is firstly obtained. Afterwards, explicit expressions for the expectation and standard deviation of the solution are obtained. Since these expressions depend upon random improper integrals, which are not computable in an exact manner, random Gauss-Hermite quadrature formulae are introduced throughout an illustrative example.


2004 ◽  
Vol 4 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Francisco J. Gaspar ◽  
Francisco J. Lisbona ◽  
Petr N. Vabishchevich

AbstractEnergy estimates and convergence analysis of finite difference methods for Biot's consolidation model are presented for several types of radial ow. The model is written by a system of partial differential equations which depend on an integer parameter (n = 0; 1; 2) corresponding to the one-dimensional ow through a deformable slab and the radial ow through an elastic cylindrical or spherical shell respectively. The finite difference discretization is performed on staggered grids using separated points for the approximation of pressure and displacements. Numerical results are given to illustrate the obtained theoretical results.


2005 ◽  
Vol 2005 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Mehdi Dehghan

The numerical solution of convection-diffusion transport problems arises in many important applications in science and engineering. These problems occur in many applications such as in the transport of air and ground water pollutants, oil reservoir flow, in the modeling of semiconductors, and so forth. This paper describes several finite difference schemes for solving the one-dimensional convection-diffusion equation with constant coefficients. In this research the use of modified equivalent partial differential equation (MEPDE) as a means of estimating the order of accuracy of a given finite difference technique is emphasized. This approach can unify the deduction of arbitrary techniques for the numerical solution of convection-diffusion equation. It is also used to develop new methods of high accuracy. This approach allows simple comparison of the errors associated with the partial differential equation. Various difference approximations are derived for the one-dimensional constant coefficient convection-diffusion equation. The results of a numerical experiment are provided, to verify the efficiency of the designed new algorithms. The paper ends with a concluding remark.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Félix del Teso ◽  
Erik Lindgren

AbstractWe propose a new monotone finite difference discretization for the variational p-Laplace operator, $$\Delta _pu=\text{ div }(|\nabla u|^{p-2}\nabla u),$$ Δ p u = div ( | ∇ u | p - 2 ∇ u ) , and present a convergent numerical scheme for related Dirichlet problems. The resulting nonlinear system is solved using two different methods: one based on Newton-Raphson and one explicit method. Finally, we exhibit some numerical simulations supporting our theoretical results. To the best of our knowledge, this is the first monotone finite difference discretization of the variational p-Laplacian and also the first time that nonhomogeneous problems for this operator can be treated numerically with a finite difference scheme.


1976 ◽  
Vol 13 (2) ◽  
pp. 276-289 ◽  
Author(s):  
Robert J. Adler

For an n-dimensional random field X(t) we define the excursion set A of X(t) by A = [t ∊ S: X(t) ≧ u] for real u and compact S ⊂ Rn. We obtain a generalisation of the number of upcrossings of a one-dimensional stochastic process to random fields via a characteristic of the set A related to the Euler characteristic of differential topology. When X(t) is a homogeneous Gaussian field satisfying certain regularity conditions we obtain an explicit formula for the mean value of this characteristic.


1996 ◽  
Vol 118 (3) ◽  
pp. 457-462 ◽  
Author(s):  
X. Lin ◽  
F. Spettel ◽  
S. Scavarda

The usual way of modeling an electropneumatic servodrive system consists of supposing the homogeneity of the flow parameters in the cylinder. In order to study the influence of the transmission line effects on the dynamic behavior of a long pneumatic rodless cylinder, a generalized one-dimensional distributed parameter cylinder model is presented. The proposed numerical scheme combining the finite difference and the “characteristics” method enables the simulate of a long rodless cylinder by taking into account the servovalve boundary conditions and the piston movement. The simulated results are compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document