scholarly journals Virtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhou Zhou ◽  
Zhigang Hu ◽  
Keqin Li

The problem of high energy consumption is becoming more and more serious due to the construction of large-scale cloud data centers. In order to reduce the energy consumption and SLA violation, a new virtual machine (VM) placement algorithm named ATEA (adaptive three-threshold energy-aware algorithm), which takes good use of the historical data from resource usage by VMs, is presented. In ATEA, according to the load handled, data center hosts are divided into four classes: hosts with little load, hosts with light load, hosts with moderate load, and hosts with heavy load. ATEA migrates VMs on heavily loaded or little-loaded hosts to lightly loaded hosts, while the VMs on lightly loaded and moderately loaded hosts remain unchanged. Then, on the basis of ATEA, two kinds of adaptive three-threshold algorithm and three kinds of VMs selection policies are proposed. Finally, we verify the effectiveness of the proposed algorithms by CloudSim toolkit utilizing real-world workload. The experimental results show that the proposed algorithms efficiently reduce energy consumption and SLA violation.

Author(s):  
A. R. Mohazabiyeh ◽  
K. H. Amirizadeh

With the increasing expansion of cloud data centers and the demand for cloud services, one of the major problems facing these data centers is the “increasing growth in energy consumption ". In this paper, we propose a method to balance the burden of virtual machine resources in order to reduce energy consumption. The proposed technique is based on a four-adaptive threshold model to reduce energy consumption in physical servers and minimize SLA violation in cloud data centers. Based on the proposed technique, hosts will be grouped into five clusters: hosts with low load, hosts with a light load, hosts with a middle load, hosts with high load and finally, hosts with a heavy load. Virtual machines are transferred from the host with high load and heavy load to the hosts with light load. Also, the VMs on low hosts will be migrated to the hosts with middle load, while the host with a light load and hosts with middle load remain unchanged. The values of the thresholds are obtained on the basis of the mathematical modeling approach and the 𝐾-Means Clustering Algorithm is used for clustering of hosts. Experimental results show that applying the proposed technique will improve the load balancing and reduce the number of VM migration and reduce energy consumption.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


2018 ◽  
Vol 173 ◽  
pp. 03092
Author(s):  
Bo Li ◽  
Yun Wang

Virtual machine placement is the process of selecting the most suitable server in large cloud data centers to deploy newly-created VMs. Traditional load balancing or energy-aware VM placement approaches either allocate VMs to PMs in centralized manner or ignore PM’s cost-capacity ratio to implement energy-aware VM placement. We address these two issues by introducing a distributed VM placement approach. A auction-based VM placement algorithm is devised for help VM to find the most suitable server in large heterogeneous cloud data centers. Our algorithm is evaluated by simulation. Experimental results show two major improvements over the existing approaches for VM placement. First, our algorithm efficiently balances the utilization of multiple types of resource by minimizing the amount of physical servers used. Second, it reduces system cost compared with existing approaches in heterogeneous environment.


2020 ◽  
Vol 21 (2) ◽  
pp. 159-172
Author(s):  
Nithiya Baskaran ◽  
Eswari R

The unbalanced usage of resources in cloud data centers cause an enormous amount of power consumption. The Virtual Machine (VM) consolidation shuts the underutilized hosts and makes the overloaded hosts as normally loaded hosts by selecting appropriate VMs from the hosts and migrates them to other hosts in such a way to reduce the energy consumption and to improve physical resource utilization. Efficient method is needed for VM selection and destination hosts selection (VM placement). In this paper, a CPU-Memory aware VM placement algorithm is proposed for selecting suitable destination host for migration. The VMs are selected using Fuzzy Soft Set (FSS) method VM selection algorithm. The proposed placement algorithm considers both CPU, Memory, and combination of CPU-Memory utilization of VMs on the source host. The proposed method is experimentally compared with several existing selection and placement algorithms and the results show that the proposed consolidation method performs better than existing algorithms in terms of energy efficiency, energy consumption, SLA violation rate, and number of VM migrations.


Sign in / Sign up

Export Citation Format

Share Document