scholarly journals CPU-Memory Aware VM Consolidation for Cloud Data Centers

2020 ◽  
Vol 21 (2) ◽  
pp. 159-172
Author(s):  
Nithiya Baskaran ◽  
Eswari R

The unbalanced usage of resources in cloud data centers cause an enormous amount of power consumption. The Virtual Machine (VM) consolidation shuts the underutilized hosts and makes the overloaded hosts as normally loaded hosts by selecting appropriate VMs from the hosts and migrates them to other hosts in such a way to reduce the energy consumption and to improve physical resource utilization. Efficient method is needed for VM selection and destination hosts selection (VM placement). In this paper, a CPU-Memory aware VM placement algorithm is proposed for selecting suitable destination host for migration. The VMs are selected using Fuzzy Soft Set (FSS) method VM selection algorithm. The proposed placement algorithm considers both CPU, Memory, and combination of CPU-Memory utilization of VMs on the source host. The proposed method is experimentally compared with several existing selection and placement algorithms and the results show that the proposed consolidation method performs better than existing algorithms in terms of energy efficiency, energy consumption, SLA violation rate, and number of VM migrations.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


2018 ◽  
Vol 173 ◽  
pp. 03092
Author(s):  
Bo Li ◽  
Yun Wang

Virtual machine placement is the process of selecting the most suitable server in large cloud data centers to deploy newly-created VMs. Traditional load balancing or energy-aware VM placement approaches either allocate VMs to PMs in centralized manner or ignore PM’s cost-capacity ratio to implement energy-aware VM placement. We address these two issues by introducing a distributed VM placement approach. A auction-based VM placement algorithm is devised for help VM to find the most suitable server in large heterogeneous cloud data centers. Our algorithm is evaluated by simulation. Experimental results show two major improvements over the existing approaches for VM placement. First, our algorithm efficiently balances the utilization of multiple types of resource by minimizing the amount of physical servers used. Second, it reduces system cost compared with existing approaches in heterogeneous environment.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhou Zhou ◽  
Zhigang Hu ◽  
Keqin Li

The problem of high energy consumption is becoming more and more serious due to the construction of large-scale cloud data centers. In order to reduce the energy consumption and SLA violation, a new virtual machine (VM) placement algorithm named ATEA (adaptive three-threshold energy-aware algorithm), which takes good use of the historical data from resource usage by VMs, is presented. In ATEA, according to the load handled, data center hosts are divided into four classes: hosts with little load, hosts with light load, hosts with moderate load, and hosts with heavy load. ATEA migrates VMs on heavily loaded or little-loaded hosts to lightly loaded hosts, while the VMs on lightly loaded and moderately loaded hosts remain unchanged. Then, on the basis of ATEA, two kinds of adaptive three-threshold algorithm and three kinds of VMs selection policies are proposed. Finally, we verify the effectiveness of the proposed algorithms by CloudSim toolkit utilizing real-world workload. The experimental results show that the proposed algorithms efficiently reduce energy consumption and SLA violation.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 218 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Ayesha Anjum Butt ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
...  

Cloud computing offers various services. Numerous cloud data centers are used to provide these services to the users in the whole world. A cloud data center is a house of physical machines (PMs). Millions of virtual machines (VMs) are used to minimize the utilization rate of PMs. There is a chance of unbalanced network due to the rapid growth of Internet services. An intelligent mechanism is required to efficiently balance the network. Multiple techniques are used to solve the aforementioned issues optimally. VM placement is a great challenge for cloud service providers to fulfill the user requirements. In this paper, an enhanced levy based multi-objective gray wolf optimization (LMOGWO) algorithm is proposed to solve the VM placement problem efficiently. An archive is used to store and retrieve true Pareto front. A grid mechanism is used to improve the non-dominated VMs in the archive. A mechanism is also used for the maintenance of an archive. The proposed algorithm mimics the leadership and hunting behavior of gray wolves (GWs) in multi-objective search space. The proposed algorithm was tested on nine well-known bi-objective and tri-objective benchmark functions to verify the compatibility of the work done. LMOGWO was then compared with simple multi-objective gray wolf optimization (MOGWO) and multi-objective particle swarm optimization (MOPSO). Two scenarios were considered for simulations to check the adaptivity of the proposed algorithm. The proposed LMOGWO outperformed MOGWO and MOPSO for University of Florida 1 (UF1), UF5, UF7 and UF8 for Scenario 1. However, MOGWO and MOPSO performed better than LMOGWO for UF2. For Scenario 2, LMOGWO outperformed the other two algorithms for UF5, UF8 and UF9. However, MOGWO performed well for UF2 and UF4. The results of MOPSO were also better than the proposed algorithm for UF4. Moreover, the PM utilization rate (%) was minimized by 30% with LMOGWO, 11% with MOGWO and 10% with MOPSO.


2018 ◽  
Vol 20 (4) ◽  
pp. 430-445 ◽  
Author(s):  
Mohamed Amine Kaaouache ◽  
Sadok Bouamama

Purpose This purpose of this paper is to propose a novel hybrid genetic algorithm based on a virtual machine (VM) placement method to improve energy efficiency in cloud data centers. How to place VMs on physical machines (PMs) to improve resource utilization and reduce energy consumption is one of the major concerns for cloud providers. Over the past few years, many approaches for VM placement (VMP) have been proposed; however, existing VM placement approaches only consider energy consumption by PMs, and do not consider the energy consumption of the communication network of a data center. Design/methodology/approach This paper attempts to solve the energy consumption problem using a VM placement method in cloud data centers. Our approach uses a repairing procedure based on a best-fit decreasing heuristic to resolve violations caused by infeasible solutions that exceed the capacity of the resources during the evolution process. Findings In addition, by reducing the energy consumption time with the proposed technique, the number of VM migrations was reduced compared with existing techniques. Moreover, the communication network caused less service level agreement violations (SLAV). Originality/value The proposed algorithm aims to minimize energy consumption in both PMs and communication networks of data centers. Our hybrid genetic algorithm is scalable because the computation time increases nearly linearly when the number of VMs increases.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 690
Author(s):  
Muhammad Ibrahim ◽  
Muhammad Imran ◽  
Faisal Jamil ◽  
Yun Jung Lee ◽  
Do-Hyeun Kim

The rapid demand for Cloud services resulted in the establishment of large-scale Cloud Data Centers (CDCs), which ultimately consume a large amount of energy. An enormous amount of energy consumption eventually leads to high operating costs and carbon emissions. To reduce energy consumption with efficient resource utilization, various dynamic Virtual Machine (VM) consolidation approaches (i.e., Predictive Anti-Correlated Placement Algorithm (PACPA), Resource-Utilization-Aware Energy Efficient (RUAEE), Memory-bound Pre-copy Live Migration (MPLM), m Mixed migration strategy, Memory/disk operation aware Live VM Migration (MLLM), etc.) have been considered. Most of these techniques do aggressive VM consolidation that eventually results in performance degradation of CDCs in terms of resource utilization and energy consumption. In this paper, an Efficient Adaptive Migration Algorithm (EAMA) is proposed for effective migration and placement of VMs on the Physical Machines (PMs) dynamically. The proposed approach has two distinct features: first, selection of PM locations with optimum access delay where the VMs are required to be migrated, and second, reduces the number of VM migrations. Extensive simulation experiments have been conducted using the CloudSim toolkit. The results of the proposed approach are compared with the PACPA and RUAEE algorithms in terms of Service-Level Agreement (SLA) violation, resource utilization, number of hosts shut down, and energy consumption. Results show that proposed EAMA approach significantly reduces the number of migrations by 16% and 24%, SLA violation by 20% and 34%, and increases the resource utilization by 8% to 17% with increased number of hosts shut down from 10% to 13% as compared to the PACPA and RUAEE, respectively. Moreover, a 13% improvement in energy consumption has also been observed.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


Sign in / Sign up

Export Citation Format

Share Document