scholarly journals Optimal Preview Control for Discrete-Time Systems in Multirate Output Sampling

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fucheng Liao ◽  
Yujian Guo

This paper studies the disturbance preview optimal control problem for discrete-time systems with multirate output sampling. By constructing the error system and using the discrete lifting technique, we reduce the multirate preview control problem to a single-rate one for a formal augmented system. Then, applying preview control theory, the optimal preview control law of the augmented error system is obtained. Meanwhile, we introduce a discrete integrator to eliminate the static error. Then we study a method to design a controller with preview action for the original system. And the existence conditions of the controller are also discussed in detail. Finally, numerical simulation is included to illustrate the effectiveness of the proposed method.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fucheng Liao ◽  
Yingxue Wu ◽  
Xiao Yu ◽  
Jiamei Deng

A finite-time bounded tracking control problem for a class of linear discrete-time systems subject to disturbances is investigated. Firstly, by applying a difference method to constructing the error system, the problem is transformed into a finite-time boundedness problem of the output vector of the error system. In fact, this is a finite-time boundedness problem with respect to the partial variables. Secondly, based on the partial stability theory and the research methods of finite-time boundedness problem, a state feedback controller formulated in form of linear matrix inequality is proposed. Based on this, a finite-time bounded tracking controller of the original system is obtained. Finally, a numerical example is presented to illustrate the effectiveness of the controller.


Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Yong-Hong Lan ◽  
Jun-Jun Xia ◽  
Yue-Xiang Shi

In this paper, a robust guaranteed-cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, a repetitive controller, combined with preview compensator, is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into a guaranteed-cost control problem for the augmented dynamic system. For a given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques. Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included, to show the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiao Yu ◽  
Fucheng Liao ◽  
Jiamei Deng

This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems. According to the preview control theory, an augmented error system including the tracking error and the known future information on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality (LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is asymptotically stable with H∞ performance. Based on this, the robust preview tracking controller of the original system is obtained. Finally, two numerical examples are included to show the effectiveness of the proposed controller.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Fucheng Liao ◽  
Zhihua Xue ◽  
Jiang Wu

The preview control problem of a class of linear discrete-time descriptor systems is studied. Firstly, the descriptor system is decomposed into a normal system and an algebraic equation by the method of the constrained equivalent transformation. Secondly, by applying the first-order forward difference operator to the state equation, combined with the error equation, the error system is obtained. The tracking problem is transformed into the optimal preview control problem of the error system. Finally, the optimal controller of the error system is obtained by using the related results and the optimal preview controller of the original system is gained. In this paper, we propose a numerical simulation method for descriptor systems. The method does not depend on the restricted equivalent transformation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongxia Wang ◽  
Huanshui Zhang ◽  
Lihua Xie

This paper considers theH∞preview control problem for discrete-time systems. It investigates the problem via game theory and dynamic programming. Different from the existing results, on one hand, the proposed approach is suitable for dealing with the corresponding multiple preview channels problem; on the other hand, the approach provides a possibility in explaining how the preview controller improves theH∞performance and why the performance will be saturated.


Author(s):  
Yong-Hong Lan ◽  
Xia Jun-Jun

A robust guaranteed cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, the repetitive controller combined with preview compensator is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed cost preview repetitive control problem is transformed into the guaranteed cost control problem for the augmented dynamic system. For given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by combining parameter-dependent Lyapunov function method with linear matrix inequality (LMI) techniques. By incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included to show the effectiveness of the proposed method.


2018 ◽  
Vol 6 (2) ◽  
pp. 178-192 ◽  
Author(s):  
Yujian Guo ◽  
Fucheng Liao

Abstract A dual-rate preview control strategy for a type of discrete-time system is proposed based on the theory of multirate control. First, by using the discrete lifting technique, the general dual-rate discrete-time system is converted into a single-rate augmented system. On this basis, the augmented error system is constructed by introducing a first-order difference operator and the previewable reference signal. Then the tracking problem is transformed into a regulator problem of the augmented error system. The optimal preview control law of the augmented error system is obtained by using standard linear quadratic optimal preview control theory, and then the optimal preview controller of the original system is derived. In addition, the necessary and sufficient conditions for the controller are given. Finally, simulation results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document