scholarly journals Caught in the Net: Perineuronal Nets and Addiction

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Megan Slaker ◽  
Jordan M. Blacktop ◽  
Barbara A. Sorg

Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

2021 ◽  
Author(s):  
Galen Ballentine ◽  
Sam Freesun Friedman ◽  
Danilo Bzdok

Psychedelics are thought to alter states of consciousness by disrupting how the higher association cortex governs bottom-up sensory signals. Individual hallucinogenic drugs are usually studied in participants in controlled laboratory settings. Here, we have explored word usage in 6,850 free-form testimonials with 27 drugs through the prism of 40 neurotransmitter receptor subtypes, which were then mapped to 3D coordinates in the brain via their gene transcription levels from invasive tissue probes. Despite the variable subjective nature of hallucinogenic experiences, our pattern-learning approach delineated how drug-induced changes of conscious awareness (e.g., dissolving self-world boundaries or fractal distortion of visual perception) are linked to cortex-wide anatomical distributions of receptor density proxies. The dominant explanatory factor related ego-dissolution-like phenomena to a constellation of 5-HT2A, D2, KOR, and NMDA receptors, anchored especially in the brain's deep hierarchy (epitomized by the associative higher-order cortex) and shallow hierarchy (epitomized by the visual cortex). Additional factors captured psychological phenomena in which emotions (5-HT2A and Imidazoline1) were in tension with auditory (SERT, 5-HT1A) or visual (5-HT2A) sensations. Each discovered receptor-experience factor spanned between a higher-level association pole and a sensory input pole, which may relate to the previously reported collapse of hierarchical order among large-scale networks. Simultaneously considering many psychoactive molecules and thousands of natural language descriptions of drug experiences our framework finds the underlying semantic structure and maps it directly to the brain. These advances could assist in unlocking their wide-ranging potential for medical treatment.


2021 ◽  
Author(s):  
Yanjun Sun ◽  
Lisa M Giocomo

AbstractThe environmental context associated with previous drug consumption serves as a potent trigger for relapse to drug use. The mechanism by which existing neural representations of context are modified to incorporate information associated with a given drug however, remains unknown. Using longitudinal calcium imaging in freely behaving mice, we reveal that drug-context associations for psychostimulants and opioids are encoded in a subset of hippocampal neurons. In these neurons, drug context pairing in a conditioned place preference task weakened their spatial coding for the nondrug-paired context, with drug-induced changes to spatial coding predictive of drug-seeking behavior. Furthermore, the dissociative drug ketamine blocked both the drug-induced changes to hippocampal coding and corresponding drug-seeking behavior. Together, this work reveals how drugs of abuse can alter the hippocampal circuit to encode drug-context associations and points to the hippocampus as a key node in the cognitive process of drug addiction and context-induced drug relapse.


1981 ◽  
Vol 196 (1) ◽  
pp. 161-170 ◽  
Author(s):  
A A Badawy ◽  
N F Punjani ◽  
M Evans

1. Chronic administration of morphine, nicotine or phenobarbitone has previously been shown to inhibit rat liver tryptophan pyrrolase activity by increasing hepatic [NADPH], whereas subsequent withdrawal enhances pyrrolase activity by a hormonal-type mechanism. 2. It is now shown that this enhancement is associated with an increase in the concentration of serum corticosterone. 3. Chronic administration of the above drugs enhances, whereas subsequent withdrawal inhibits, brain 5-hydroxytryptamine synthesis. Under both conditions, tryptophan availability to the brain is altered in the appropriate direction. 4. The chronic drug-induced enhancement of brain tryptophan metabolism is reversed by phenazine methosulphate, whereas the withdrawal-induced inhibition is prevented by nicotinamide. 5. The chronic morphine-induced changes in liver [NADPH], pyrrolase activity, tryptophan availability to the brain and brain 5-hydroxytryptamine synthesis are all reversed by the opiate antagonist naloxone. 6. It is suggested that the opposite effects on brain tryptophan metabolism of chronic administration and subsequent withdrawal of the above drugs of dependence are mediated by the changes in liver tryptophan pyrrolase activity. 6. Similar conclusions based on similar findings have previously been made in relation to chronic administration and subsequent withdrawal of ethanol. These findings with all four drugs are briefly discussed in relation to previous work and the mechanism(s) of drug dependence.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document