scholarly journals Development of a Low-Level Control System for the ROV Visor3

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Santiago Rúa ◽  
Rafael E. Vásquez

This paper addresses the development of the simulation of the low-level control system for the underwater remotely operated vehicle Visor3. The 6-DOF mathematical model of Visor3 is presented using two coordinated systems: Earth-fixed and body-fixed frames. The navigation, guidance, and control (NGC) structure is divided into three layers: the high level or the mission planner; the mid-level or the path planner; and the low level formed by the navigation and control systems. The nonlinear model-based observer is developed using the extended Kalman filter (EKF) which uses the linearization of the model to estimate the current state. The behavior of the observer is verified through simulations using Simulink®. An experiment was conducted with a trajectory that describes changes in the x and y and yaw components. To accomplish this task, two algorithms are compared: a multiloop PID and PID with gravity compensation. These controllers and the nonlinear observer are tested using the 6-DOF mathematical model of Visor3. The control and navigation systems are a fundamental part of the low-level control system that will allow Visor3’s operators to take advantage of more advanced vehicle’s capabilities during inspection tasks of port facilities, hydroelectric dams, and oceanographic research.

2017 ◽  
Vol 50 (1) ◽  
pp. 1151-1156 ◽  
Author(s):  
Álvaro Gómez ◽  
Luis M. Aristizábal ◽  
Carlos A. Zuluaga ◽  
Julio C. Correa ◽  
Rafael E. Vásquez

Author(s):  
Erik Chumacero-Polanco ◽  
James Yang

Abstract People who have suffered a transtibial amputation show diminished ambulation and impaired quality of life. Powered ankle foot prostheses (AFP) are used to recover some mobility of transtibial amputees (TTAs). Powered AFP is an emerging technology that has great potential to improve the quality of life of TTAs with important avenues for research and development in different fields. This paper presents a survey on sensing systems and control strategies applied to powered AFPs. Sensing kinematic and kinetic information in powered AFPs is critical for control. Ankle angle position is commonly obtained via potentiometers and encoders directly installed on the joint, velocities can be estimated using numerical differentiators, and accelerations are normally obtained via inertial measurement units (IMUs). On the other hand, kinetic information is usually obtained via strain gauges and torque sensors. On the other hand, control strategies are classified as high- and low-level control. The high-level control sets the torque or position references based on pattern generators, user’s intent of motion recognition, or finite-state machine. The low-level control usually consists of linear controllers that drive the ankle’s joint position, velocity, or torque to follow an imposed reference signal. The most widely used control strategy is the one based on finite-state machines for the high-level control combined with a proportional-derivative torque control for low-level. Most designs have been experimentally assessed with acceptable results in terms of walking speed. However, some drawbacks related to powered AFP’s weight and autonomy remain to be overcome. Future research should be focused on reducing powered AFP size and weight, increasing energy efficiency, and improving both the high- and the low-level controllers in terms of efficiency and performance.


2009 ◽  
Author(s):  
M. KONYEV ◽  
F. PALIS ◽  
Y. ZAVGORODNIY ◽  
A. MELNYKOV ◽  
A. RUDSKYY ◽  
...  

2016 ◽  
Vol 39 (12) ◽  
pp. 1798-1810 ◽  
Author(s):  
Jinghua Guo ◽  
Yugong Luo ◽  
Keqiang Li

In this paper, the leader–follower formation control problem of autonomous over-actuated electric vehicles on a highway is studied. As the autonomous over-actuated electric vehicles have the characteristics of non-linearities, external disturbances and strong coupling, a novel coordinated three-level control system is constructed to supervise the longitudinal and lateral motions of autonomous electric vehicles. Firstly, an adaptive terminal sliding high-level control algorithm is designed to compute a vector of total forces and torque of vehicles, and the stability of the high-level control system is proven via Lyapunov analysis where uniform ultimate boundedness of the closed-loop signals is guaranteed. Then, a pseudo-inverse control allocation algorithm, which can achieve fault tolerance and reconfiguration of the redundant tyre actuation system, is presented to generate the desired longitudinal and lateral tyre forces. Then, a separate low-level controller consisting of an inverse tyre model and two inner loops for each wheel is designed to achieve its desired forces. Finally, simulation results demonstrate that the proposed control system not only enhance the tracking performance, but also improve the stability and riding comfort of autonomous over-actuated electric vehicles in a platoon.


2010 ◽  
Vol 43 (8) ◽  
pp. 200-205
Author(s):  
A. Masi ◽  
M. Donze ◽  
R. Losito

2008 ◽  
Vol 55 (1) ◽  
pp. 333-340 ◽  
Author(s):  
Alessandro Masi ◽  
Roberto Losito

Sign in / Sign up

Export Citation Format

Share Document