scholarly journals Design and Performance Analysis of MISO-ORM-DCSK System over Rayleigh Fading Channels

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Gang Zhang ◽  
Chuan gang Wang ◽  
Guo quan Li ◽  
Jin zhao Lin

A novel chaotic communication system, named Orthogonality-based Reference Modulated-Differential Chaos Shift Keying (ORM-DCSK), is proposed to enhance the performance of RM-DCSK. By designing an orthogonal chaotic generator (OCG), the intrasignal interference components in RM-DCSK are eliminated. Also, the signal frame format is expanded so the average bit energy is reduced. As a result, the proposed system has less interference in decision variables. Furthermore, to investigate the bit error rate (BER) performance over Rayleigh fading channels, the MISO-ORM-DCSK is studied. The BER expressions of the new system are derived and analyzed over AWGN channel and multipath Rayleigh fading channel. All simulation results not only show that the proposed system can obtain significant improvement but also verify the analysis in theory.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gang Zhang ◽  
Yi man Hao ◽  
Tian qi Zhang

The major drawback of the differential chaos shift keying (DCSK) system is that equal time and energy are spent on the reference and data signal. This paper presents the design and performance analysis of a short reference multifold rate DCSK (SRMR-DCSK) system to overcome the major drawback. The SRMR-DCSK system is proposed to enhance the data rate of the short reference differential chaos shift keying (SR-DCSK) system. By recycling each reference signal in SR-DCSK, the data slot carries N bits of data and by P times. As a result, compared with SR-DCSK, the proposed system has a higher data transmission rate and evaluates the energy efficiency with respect to the conventional DCSK system. To further improve the bit-error-rate (BER) performance over Rayleigh fading channels, the multiple-input single-output SRMR-DCSK (MISO-SRMR-DCSK) is also studied. The BER expression of the proposed system is derived based on Gaussian approximation (GA), and simulations in Rayleigh fading channels are performed. Simulation results show a perfect match with the analytical expression.


2020 ◽  
Vol 60 (1) ◽  
pp. 1-11
Author(s):  
Hesham Adnan Alabbasi ◽  
Izz Kadhum Abboud ◽  
Fadhil Sahib Hasan

One of the most famous techniques of non-coherent differential chaos shift keying (DCSK) is Quadrature chaos shift keying (QCSK) system, this system suffered from lowering the data rate and increasing the bit energy during the bit transmission even though its rate doubling the one of the DCSK. Short reference (SR) algorithm is proposed for the QCSK system to design the SR-QCSK communication system that enhances these drawbacks. The main idea of the short reference technique is minimizing the length of the reference chaotic signal (β) at a transmitter by a factor P comparing to produce R samples for the new reference signal while the length of the information-bearing signal remained unchanged, this occurs by duplicating the reference signal P times to get the same length as the conventional QCSK. Therefore, the symbol duration is reduced from 2βTc to (R+β)Tc. The data rate and energy saving improvement factor in a percent form is derived and compared with the QCSK and DCSK systems. Also, the BER analytical expression is derived for the SR-QCSK in additive white Gaussian noise and Rayleigh fading channel. The experimental simulation results proved that the theory derivation gives a good analysis tracking for the BER performance. The SR-QCSK system is compared with other DCSK techniques and the simulation results show that it has a superior performance in the multipath Rayleigh fading channel.


Author(s):  
Md. Firoz Ahmed ◽  
Md. Faysal Ahmed ◽  
Abu Zafor Md. Touhidul Islam

Digital modulation increases information capacity, data security, and system availability while maintaining high communication quality. As a result, digital modulation techniques are in higher demand than analog modulation techniques due to their ability to transmit larger amounts of data. Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), and Quadrature Amplitude Modulation (QAM) are critical components of current communications systems development, particularly for broadband wireless communications. In this paper, the comparison of bit error rate performance of different modulation schemes (BPSK, QPSK, and16-QAM) and various equalization techniques such as constant modulus algorithm (CMA) and maximum likelihood sequence estimate (MLSE) for the AWGN and Rayleigh fading channels is analyzed using Simulink. BPSK outperforms QPSK and 16-QAM when compared to the other two digital modulation schemes. Among the three digital modulation schemes, BPSK is showing better performance as compared to QPSK and 16-QAM.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850233 ◽  
Author(s):  
Hong Min Zhou ◽  
Ying Zhang ◽  
Ying Yu

In multi-carrier differential chaos shift keying (MC-DCSK) system, channel noises pollute both the reference and data signals, resulting in deteriorated performance. To reduce noises in received signals in MC-DCSK, a novel noise reduction MC-DCSK (NR-MC-DCSK) system is proposed in this paper. The proposed system utilizes duplicated chaotic samples, rather than different ones, as the reference. At the receiver side, identical samples can be averaged before correlation detection, which helps decrease the noise interferences and thus brings performance improvement. Theoretical bit error rate (BER) expressions are derived and verified by simulation results for additive white Gaussian noise and multipath Rayleigh fading channels. Finally, comparisons to MC-DCSK and other DCSK-based systems are given to confirm the superiority of the proposed system in BER performance.


2014 ◽  
Vol 24 (04) ◽  
pp. 1450050
Author(s):  
Zhiliang Zhu ◽  
Jingping Song ◽  
Yanjie Song ◽  
Hai Yu

A new multiaddress Co-Chaos Shift keying communication scheme (MA-CoCSK) was proposed based on analyzing the permutation-based differential chaos-shift-keying (PMA-DCSK) scheme and the Antipodal Chaos-Shift-Keying (ACSK) scheme. We also analyzed the bit error rate of the new scheme in Gaussian white noise channel and compared its performance with that of the PMA-DCSK scheme. Theory analysis and simulation results both indicate that the scheme proposed in this paper can not only improve the transmission efficiency of a communication system, but also decrease the bit error rate significantly while increasing the speed compared to PMA-DCSK.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2343
Author(s):  
Ya-Qiong Jia ◽  
Guo-Ping Jiang ◽  
Hua Yang ◽  
Bin Yu ◽  
Ming-Di Du

A new fractional-order multi-carrier M-ary differential chaos shift keying system with multilevel code-shifted modulation (MC-MDCSK-MCS) is presented in this paper. The proposed system adopts multiple subcarriers, on which multiple MCS-MDCSK-modulated signals are transmitted simultaneously. Moreover, M-ary modulation has been combined with the proposed system to achieve a higher bit rate. On the receiver side, the recovered reference signal is first averaged and then used for MCS-MDCSK demodulation, which helps improve performance. We analyze the bit error rate (BER) of the proposed system and verify our theoretical derivations with the simulation results over additive white Gaussian noise (AWGN) and Rayleigh fading channels. Finally, related comparisons are completed, which show that the MC-MDCSK-MCS system is excellent and promising.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 245
Author(s):  
Jayakumari J ◽  
Rakhi K J

With the widespread effective usage of LEDs the visible light communication (VLC) system has brought out an increasing interest in the field of wireless communication recently. VLC is envisioned to be an appealing substitute to RF systems because of the advantages of LEDs such as high communication security, rich spectrum, etc. For achieving bearable inter symbol interference (ISI) and high data rates, OFDM can be employed in VLC. In this paper, the performance of VLC system with popular unipolar versions of OFDM viz. Flip-OFDM and ACO-OFDM is analyzed in fading channels. From the simulation results it is seen that the Flip-OFDM-VLC system outperforms the ACO-OFDM-VLC system in terms of bit error rate and is well suited for future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document