scholarly journals An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall

2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Qinghui Zhang ◽  
Yufeng Zhang ◽  
Yi Zhou ◽  
Kun Zhang ◽  
Kexin Zhang ◽  
...  

This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue’s motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity.

2007 ◽  
Vol 40 (16) ◽  
pp. 3715-3724 ◽  
Author(s):  
M.X. Li ◽  
J.J. Beech-Brandt ◽  
L.R. John ◽  
P.R. Hoskins ◽  
W.J. Easson

Author(s):  
Jing Wang ◽  
Suzie Brown ◽  
Stephen W. Tullis

The aorta is the largest artery in humans, stemming from the left ventricle of the heart and stretching down to the abdomen. It is responsible for distributing oxygenated blood to the rest of the body during each cardiac cycle. The pulsatile blood flow is complex in nature and has been previously modeled computationally in an effort to understand its effect on cardiovascular diseases and medical device design interaction [4,8–9]. However, the majority of these models either treat the vessel wall as rigid or have significantly simplified geometries, which from a physiological perspective are not true of large vessels such as the aorta. Here, the complex mechanical interaction between pulsatile blood flow and wall dynamics in the aortic arch is investigated using geometry adopted directly from CT images.


2007 ◽  
Vol 55 (S 1) ◽  
Author(s):  
W Schiller ◽  
K Spiegel ◽  
T Schmid ◽  
H Rudorf ◽  
S Flacke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document