scholarly journals Multicore PSO Operation for Maximum Power Point Tracking of a Distributed Photovoltaic System under Partially Shading Condition

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Ru-Min Chao ◽  
Ahmad Nasirudin ◽  
I-Kai Wang ◽  
Po-Lung Chen

This paper identifies the partial shading problem of a PV module using the one-diode model and simulating the characteristics exhibiting multiple-peak power output condition that is similar to a PV array. A modified particle swarm optimization (PSO) algorithm based on the suggested search-agent deployment, retracking condition, and multicore operation is proposed in order to continuously locate the global maximum power point for the PV system. Partial shading simulation results for up to 16 modules in series/parallel formats are presented. A distributed PV system consisting of up to 8 a-silicon thin film PV panels and also having a dedicated DC/DC buck converter on each of the modules is tested. The converter reaches its steady state voltage output in 10 ms. However for MPPT operation, voltage, and current measurement interval is set to 20 ms to avoid unnecessary noise from the entire electric circuit. Based on the simulation and experiment results, each core of the proposed PSO operation should control no more than 4 PV modules in order to have the maximum tracking accuracy and minimum overall tracking time. Tracking for the global maximum power point of a distributed PV system under various partial shading conditions can be done within 1.3 seconds.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 327 ◽  
Author(s):  
Muhammad Afzal Awan ◽  
Tahir Mahmood

Optimal energy extraction under partial shading conditions from a photovoltaic (PV) array is particularly challenging. Conventional techniques fail to achieve the global maximum power point (GMPP) under such conditions, while soft computing techniques have provided better results. The main contribution of this paper is to devise an algorithm to track the GMPP accurately and efficiently. For this purpose, a ten check (TC) algorithm was proposed. The effectiveness of this algorithm was tested with different shading patterns. Results were compared with the top conventional algorithm perturb and observe (P&O) and the best soft computing technique flower pollination algorithm (FPA). It was found that the proposed algorithm outperformed them. Analysis demonstrated that the devised algorithm achieved the GMPP efficiently and accurately as compared to the P&O and the FPA algorithms. Simulations were performed in MATLAB/Simulink.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4971
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

A significant growth in PV (photovoltaic) system installations have been observed during the last decade. The PV array has a nonlinear output characteristic because of weather intermittency. Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT) methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore, to enhance the performance of the PV system under shading conditions, the global MPPT technique is mandatory to force the PV system to operate close to the global maximum. In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithm is applied to solve the dilemma of tracking the global power of PV system based triple-junction solar cells under shading conditions. SFS has been nominated because it can converge to the best solution at a fast rate. Moreover, balance between exploration and exploitation phases is one of its main advantages. Therefore, the SFS algorithm has been selected to extract the global maximum power point (MPP) under partial shading conditions. To prove the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been considered. The idea of changing the shading scenario is to change the position of the global MPP. The obtained results are compared with common optimizers: Antlion Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm (GSA). The results of comparison confirmed the effectiveness and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA, and GSA.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4938
Author(s):  
Waleed Al Abri ◽  
Rashid Al Abri ◽  
Hassan Yousef ◽  
Amer Al-Hinai

Partial shading conditions (PSCs) can significantly reduce the output energy produced by photovoltaic (PV) systems. Moreover, when such conditions occur, conventional and advanced maximum power point tracking (MPPT) systems fail to operate the PV system at its peak because the bypassing diodes may cause the PV system to become trapped at a low power point when they are in conduction mode. The PV system can be operated at the global maximum power point (MPP) with the help of global peak searching tools. However, the frequent use of these tools will reduce the output of PV systems since they force the PV system to operate outside its power region while scanning the I-V curve in order to determine the global MPP. Thus, the global peak searching tools should be deployed only when a PSC occurs. In this paper, a simple and accurate method is proposed for detecting PSCs by means of monitoring the sign of voltage changes (positive or negative). The method predicts a PSC if the sign of successive voltage changes is the same for a certain number of successive changes. The proposed method was tested on two types of PV array configurations (series and series–parallel) with several shading patterns emulated on-site. The proposed method correctly and timely identified all emulated shading patterns. It can be used to trigger the global MPP searching techniques for improving the PV system’s output under PSCs; furthermore, it can be used to notify the PV system’s operator of the occurrence of PSCs.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2228
Author(s):  
Carlos Restrepo ◽  
Nicolas Yanẽz-Monsalvez ◽  
Catalina González-Castaño ◽  
Samir Kouro ◽  
Jose Rodriguez

Among all the conventional maximum power point tracking (MPPT) techniques for a photovoltaic (PV) system that have been proposed, incremental conductance (INC) and perturb and observe (P&O) are the most popular because of their simplicity and ease of implementation. However, under partial shading conditions (PSCs), these MPPT algorithms fail to track the global maximum power point (GMPP) and instead converge into local maximum power points (LMPPs), resulting in considerable PV power loss. This paper presents a new hybrid MPPT technique combining the artificial bee colony (ABC) and P&O algorithms named ABC-P&O. The P&O technique is used to track the MPP under uniform irradiance, and only during irradiance variations is the ABC algorithm employed. The effectiveness of the proposed hybrid algorithm at tracking the GMPP, under both uniform and nonuniform irradiance conditions, was assessed by hardware-in-the-loop (HIL) tests employed by a dc–dc boost converter. Then, the ABC-P&O strategy was applied to obtain the voltage reference for the outer PI control loop, which provided the current reference to the discrete-time sliding-mode current control. The ABC-P&O algorithm has a reasonable computational cost, allowing the use of a commercial, low-priced digital signal controller (DSC) with outer voltage and inner current control loops. Many challenging tests validated that the proposed ABC-P&O technique converges fast to the GMPP with high efficiency and superior performance under different PSCs.


2020 ◽  
Vol 12 (24) ◽  
pp. 10310 ◽  
Author(s):  
Abdulaziz Almutairi ◽  
Ahmed G. Abo-Khalil ◽  
Khairy Sayed ◽  
Naif Albagami

The disadvantage of photovoltaic (PV) power generation is that output power decreases due to the presence of clouds or shade. Moreover, it can only be used when the sun is shining. Consequently, there is a need for further active research into the maximum power point tracking (MPPT) technique, which can maximize the power of solar cells. When the solar cell array is partially shaded due to the influence of clouds or buildings, the solar cell characteristic has a number of local maximum power points (LMPPs). Conventional MPPT techniques do not follow the actual maximum power point, namely, the global maximum power point (GMPP), but stay in the LMPP. Therefore, an analysis of the occurrence of multiple LMPPs due to partial shading, as well as a study on the MPPT technique that can trace GMPP, is needed. In order to overcome this obstacle, the grey wolf optimization (GWO) method is proposed in order to track the global maximum power point and to maximize the energy extraction of the PV system. In addition, opposition-based learning is integrated with the GWO to accelerate the MPPT search process and to reduce convergence time. Simultaneously, the DC link voltage is controlled to reduce sudden variations in voltage in the event of transients of solar radiation and/or temperature. Experimental tests are presented to validate the effectiveness of the proposed MPPT method during uniform irradiance and partial shading conditions. The proposed method is compared with the perturbation and observation method.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3548 ◽  
Author(s):  
Dalia Yousri ◽  
Thanikanti Sudhakar Babu ◽  
Dalia Allam ◽  
Vigna. K. Ramachandaramurthy ◽  
Eman Beshr ◽  
...  

Solar Photovoltaic (PV) systems have become prominent and have attained the attention of energy engineers, governments and researchers. To achieve the maximum benefit from the PV system in spite of its nonlinear characteristic and environmental conditions, finding a robust maximum power point tracking method is essential. Over two decades, various researchers proposed numerous MPPT methods, but they failed to evaluate their methods on consistency, reliability, and robustness over several numbers of runs. Most of the researchers examined one configuration and they did not to consider the dynamic change in the irradiation conditions. Therefore, in this manuscript, the authors introduced a novel optimization technique Fractional chaotic Flower Pollination Algorithm (FC-FPA), by merging fractional chaos maps with flower pollination algorithm (FPA). The proposed technique, help FPA in extracting the Global Maximum Power Point (GMPP) under different partial shading patterns including with different PV array configurations. The proposed FC-FPA technique is tested and evaluated over 5 different patterns of partial shading conditions. The first three patterns are tested over 4S configuration made with Shell S36 PV module. The other two patterns are applied to the 4S2P configuration of Shell SM55 PV panels. The performance of the proposed variant is investigated by tracking the GMPP for abruptly changing shade pattern. Exclusive statistical analysis is performed over several numbers of runs. Comparison with perturb and observe MPPT technique is established. These results confirm that, the proposed method shows fast convergence, zero oscillation and rapid response for the dynamic change in irradiation with consistent behavior.


Author(s):  
Salmi Hassan ◽  
Badri Abdelmajid ◽  
Zegrari Mourad ◽  
Sahel Aicha ◽  
Baghdad Abdenaceur

<p>Maximum power point tracking (MPPT) algorithms are employed in photovoltaic (PV) systems to make full utilization of PV array output power, which have a complex relationship between ambient temperature and solar irradiation. The power-voltage characteristic of PV array operating under partial shading conditions (PSC) exhibits multiple local maximum power points (LMPP). In this paper, an advanced algorithm has been presented to track the global maximum power point (GMPP) of PV. Compared with the Perturb and Observe (P&amp;O) techniques, the algorithm proposed the advantages of determining the location of GMPP whether partial shading is present.</p>


Sign in / Sign up

Export Citation Format

Share Document