scholarly journals Image Regularity and Fidelity Measure with a Two-Modality Potential Function

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Weiwei Wang ◽  
Shengjiang Kong ◽  
Amir Razi ◽  
Xiangchu Feng

We define a strictly convex smooth potential function and use it to measure the data fidelity as well as the regularity for image denoising and cartoon-texture decomposition. The new model has several advantages over the well-known ROF or TV-L2 and the TV-L1 model. First, due to the two-modality property of the new potential function, the new regularity has strong regularizing properties in all directions and thus encourages removing noise in smooth areas, while, near edges, it smoothes the edge mainly along the tangent direction and thus can well preserve the edges. Second, the new potential function is very close to the L1 norm; thus using it to measure the data fidelity makes the new model perform very well in removing impulse noise and preserving the contrast. Lastly, the proposed fidelity and regularization term is strictly convex and smooth and thus allows a unique global minimizer and it can be solved by using the steepest descent method. Numerical experiments show that the proposed model outperforms TV-L2 and TV-L1 in removing impulse noise and mixed noise. It also outperforms some state-of-the-art methods specially designed for impulse noise. Tests on cartoon-texture decomposition show that our method is effective and performs better than TV-L1.

Author(s):  
Mehmet Açil ◽  
Ali Konuralp

In this paper, three different uniqueness data are investigated to reconstruct the potential function in the Sturm-Liouville boundary value problem in the normal form. Taking account of R\"{o}hrl's objective function, the steepest descent method is used in the computation of potential functions. To decrease the volume of computation, we propose a theorem to precalculate the minimization parameter that is required in the optimization. Further, we propose a novel time-saving algorithm in which the obligation of using the asymptotics of eigenvalues and eigenfunctions and the appropriateness of selected boundary conditions are also eliminated. As partial data, we take two spectra, the set of the $j$th elements of the infinite numbers of spectra obtained by changing boundary conditions in the problem, and one spectrum with the set of terminal velocities. In order to show the efficiency of the proposed method, numerical results are given for three test potentials which are smooth, nonsmooth continuous, and noncontinuous, respectively.


2012 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
E.V. Karachurina ◽  
S.Yu. Lukashchuk

An inverse coefficient problem is considered for time-fractional anomalous diffusion equations with the Riemann-Liouville and Caputo fractional derivatives. A numerical algorithm is proposed for identification of anomalous diffusivity which is considered as a function of concentration. The algorithm is based on transformation of inverse coefficient problem to extremum problem for the residual functional. The steepest descent method is used for numerical solving of this extremum problem. Necessary expressions for calculating gradient of residual functional are presented. The efficiency of the proposed algorithm is illustrated by several test examples.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3904
Author(s):  
Ji-Chang Son ◽  
Myung-Ki Baek ◽  
Sang-Hun Park ◽  
Dong-Kuk Lim

In this paper, an improved immune algorithm (IIA) was proposed for the torque ripple reduction optimal design of an interior permanent magnet synchronous motor (IPMSM) for a fuel cell electric vehicle (FCEV) traction motor. When designing electric machines, both global and local solutions of optimal designs are required as design result should be compared in various aspects, including torque, torque ripple, and cogging torque. To lessen the computational burden of optimization using finite element analysis, the IIA proposes a method to efficiently adjust the generation of additional samples. The superior performance of the IIA was verified through the comparison of optimization results with conventional optimization methods in three mathematical test functions. The optimal design of an IPMSM using the IIA was conducted to verify the applicability in the design of practical electric machines.


2005 ◽  
Vol 128 (2) ◽  
pp. 352-358 ◽  
Author(s):  
C. Treesatayapun ◽  
S. Uatrongjit

This paper presents a direct adaptive controller for chaotic systems. The proposed adaptive controller is constructed using the network called fuzzy rules emulated network (FREN). FREN’s structure is based on human knowledge in the form of fuzzy rules. Parameter adaptation algorithm based on the steepest descent method is presented to fine tune the controller’s performance. To improve the system stability, the modified sliding mode algorithm is applied to estimate the upper and lower bounds of the control effort. The suitable control effort is generated by FREN and kept within these bounds. Some computer simulations of using the controller to control the Hénon map have been performed to demonstrate the performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document