scholarly journals Integration of Geometrical and Material Nonlinear Energy Sink with Piezoelectric Material Energy Harvester

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ye-Wei Zhang ◽  
Chuang Wang ◽  
Bin Yuan ◽  
Bo Fang

This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES) with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM) is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.

Author(s):  
Donghai Qiu ◽  
Manuel Paredes ◽  
Sébastien Seguy

This paper aims to propose a generalized methodology for designing a novel nonlinear energy sink with variable pitch springs. To this end, a generic model of the nonlinear energy sink system providing the nonlinearity of pure cubic stiffness is introduced. Key features of the model include: (i) specifically sizing two variable pitch springs to provide the force polynomial components with only linear and cubic terms; (ii) pre-compressing two springs at the transition point to produce smooth nonlinear force characteristics; (iii) adding a negative stiffness mechanism to counterbalance the linear term. To generate the variable pitch spring, design parametrization is implemented. The type of shape and the pitch distribution adopted for the spring are shown to fit the objective force–displacement function well. To validate the concept, a special sized nonlinear energy sink system is developed. Identification of the force–displacement relation and experiments for the whole system embedded on an electrodynamic shaker are studied. The results show that this nonlinear energy sink can not only output the anticipated nonlinearity, but can also produce energy pumping to protect the primary system in a large band of frequencies, thus making it practical for the application of passive vibration control.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Zhi-Wei Fang ◽  
Ye-Wei Zhang ◽  
Xiang Li ◽  
Hu Ding ◽  
Li-Qun Chen

The present study aims to investigate the steady-state response regimes of a device comprising a nonlinear energy sink (NES) and a giant magnetostrictive energy harvester utilizing analytical approximation. The complexification-averaging (CX-A) technique is generalized to systems defined by differential algebraic equations (DAEs). The amplitude-frequency responses are compared with numerical simulations for validation purposes. The tensile and compressive stresses of giant magnetostrictive material (GMM) are checked to ensure that the material functions properly. The energy harvested is calculated and the comparison of transmissibility of the apparatus with and without NES–GMM is exhibited to reveal the performance of vibration mitigation. Then, the stability and bifurcations are examined. The outcome demonstrates that the steady-state periodic solutions of the system undergo saddle-node (SN) bifurcation at a certain set of parameters. In the meantime, no Hopf bifurcation is observed. The introduction of NES and GMM for vibration reduction and energy harvesting brings about geometric nonlinearity and material nonlinearity. By computing both the responses of the primary system equipped with the NES only and the NES–GMM, it is indicated that the added GMM can dramatically modify the steady-state dynamics. A further optimization with respect to the cubic stiffness, the damper of NES, and the amplitude of excitation is conducted, respectively. The boundary where the giant magnetostrictive energy harvester is out of work is pointed out as well during the process of optimizing.


2021 ◽  
pp. 107754632199358
Author(s):  
Ali Fasihi ◽  
Majid Shahgholi ◽  
Saeed Ghahremani

The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2261-2273 ◽  
Author(s):  
George C Tsiatas ◽  
Dimitra A Karatzia

The reliability of the hysteretic nonlinear energy sink in shock mitigation is investigated herein. The hysteretic nonlinear energy sink is a passive vibration control device which is coupled to a primary linear oscillator. Apart from its small mass and a nonlinear elastic spring of the Duffing oscillator, it also comprises a purely hysteretic and a linear elastic spring of potentially negative stiffness. The Bouc–Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. The hysteretic nonlinear energy sink protects the primary system through the energy pumping mechanism which transfers energy from the primary system and dissipates it in the hysteretic nonlinear energy sink. Three nonlinear equations of motion describe the resulting two-degree-of-freedom system response. The parameters of the system to be considered as uncertain are the natural frequency of the primary system and the hysteretic nonlinear energy sink linear elastic spring, which follow a normal distribution. A reliability analysis is then performed to evaluate the robustness of the coupled system in the presence of uncertainty. Specifically, the reliability index is calculated based on first passage probabilities of distinct dissipation energy level crossings using the Monte Carlo method. Several examples are examined considering various levels of initial input energy, and useful conclusions are drawn concerning the influence of uncertainty in the system robustness.


2017 ◽  
Vol 38 (7) ◽  
pp. 1019-1030 ◽  
Author(s):  
Xiang Li ◽  
Yewei Zhang ◽  
Hu Ding ◽  
Liqun Chen

Author(s):  
Youzuo Jin ◽  
Kefu Liu ◽  
Deli Li ◽  
Liuyang Xiong ◽  
Lihua Tang

Abstract In this paper, a non-traditional variant nonlinear energy sink (NES) is developed for simultaneous vibration suppression and energy harvesting in a broad frequency band. The non-traditional variant NES consists of a cantilever beam attached by a pair of magnets at its free end, a pair of the so-called continuous-contact blocks, and a pair of coils. The beam is placed between the continuous-contact blocks. The constraint of the continuous-contact blocks forces the beam to deflect nonlinearly. Each of the magnet-coil pairs forms an electromagnetic energy harvester. Different from a traditional way that attaches the coils to the primary mass, the developed setup has the coils fixed to the base. First, the developed apparatus is described. Subsequently, the system modeling and parameter identification are addressed. The performance of the apparatus under transient responses is examined by using computer simulation. The results show that the proposed apparatus behaves similarly as the NES with the following features: 1:1 resonance, targeted energy transfer, initial energy dependence, etc.


Sign in / Sign up

Export Citation Format

Share Document