giant magnetostrictive material
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guangming Xue ◽  
Jitao Ge ◽  
Peng Ning ◽  
Jun Zhou ◽  
Ke Wang ◽  
...  

AbstractGiant magnetostrictive injector using giant magnetostrictive material acting an electronic controlled injector may be one new promising injector to acquire adjustable injection rates while maintaining large injection quantity. An electronic controlled injector driven by a giant magnetostrictive actuator was designed through combining the driving requirement and output characteristics of the material. To promote responding speed of the coil current, the driving voltage with open-hold-fall type waveform was employed just like using in an electromagnetic injector. Simulation model for the injection characteristic of the injector was established using AMEsim software and verified using experimental results collected by the single injection meter. From simulation and experimental results, designed giant magnetostrictive injector showed good performances as maximum spray rate of 4.5 L/min and minimum spray pulse width of 0.21 ms, and realized the boot shape injection when generated by the designed voltage wave. Furthermore, duration time and amplitude of the pilot spray part in a boot shape injection were respectively adjusted through changing the dwell time and opening time. The boot shape injection reached by the giant magnetostrictive injector can reach quite accurate control of fuel injection and then promote fuel efficiency effectively.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110606
Author(s):  
Zhenquan Fan ◽  
Xiaoyu Wang ◽  
Zijin Wang ◽  
Sijia Gao ◽  
Sheng Lin

Exoskeleton technology is more and more widely used in military, human rehabilitation, and other fields, but exoskeleton assisting mechanisms have problems such as high quality, concentrated driving sources, and poor flexibility. This article proposes a distributed variable stiffness joint power-assisted mechanism based on a laminated structure, which uses a giant magnetostrictive material as the driving source and the variable stiffness source of the structure. The distributed driving is realized by multiple driving units connected in series and parallel. Firstly, the drive unit stiffness matrix is deduced, and the expression equations of the cascaded total stiffness matrix of the drive module are obtained. After the simulation study, the curve of the stiffness of a single drive unit with a magnetic field and the stiffness of multiple drive units connected in series and parallel are in the absence of the magnetic field. The change curve of the stiffness of the booster module with the number of drive units under the excitation and saturation magnetic field excitation conditions is to achieve the effect of dynamically controlling the structural stiffness of the drive unit by controlling the size of the magnetic field and to obtain a general formula through data fitting. The number of drive units required under a fixed magnetic field excitation can ensure that the error is within 5%. The research results lay the foundation for further analysis of the distributed variable stiffness joint assist technology.


2020 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Shaoyi Xu ◽  
Qiang Peng ◽  
Chuansheng Li ◽  
Bo Liang ◽  
Junwen Sun ◽  
...  

Optical fiber current sensors are widely used in the online monitoring of a new generation power system because of their high electrical insulation, wide dynamic range, and strong anti-electromagnetic interference ability. Current sensors, based on fiber Bragg grating (FBG) and giant magnetostrictive material, have the advantages of high reliability of FBG and high magnetostrictive coefficient of giant magnetostrictive material, which can meet the monitoring requirements of digital power systems. However, giant magnetostrictive materials are expensive, fragile, and difficult to mold, so giant magnetostrictive composite materials have replaced giant magnetostrictive materials as the sensitive elements of sensors. High sensitivity, high precision, wide working range, low response time, and low-cost optical fiber current sensors based on magnetostrictive composites have become a research hotspot. In this paper, the working principle of the sensor, the structure of the sensor, and the improvement of magnetostrictive composite materials are mainly discussed. At the same time, this paper points out improvements for the sensor.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1833
Author(s):  
Shaoyi Xu ◽  
Qiang Peng ◽  
Fangfang Xing ◽  
Hongyu Xue ◽  
Junwen Sun ◽  
...  

This paper presents the design, fabrication, and characterization of a compact current sensor based on magnetostrictive composites and resistance strain gauges. Firstly, we designed three kinds of current sensors with different structures, in which the shape of the giant magnetostrictive material (GMM) was cuboid, cylindrical, and semi-cylindrical. A set of finite element method (FEM) simulations were performed to qualitatively guide the design of three prototypes of the current sensor. It was determined that the most ideal shape of the GMM was semi-cylindrical. Secondly, Terfenol-D (TD) powder and epoxy resin were mixed to prepare magnetostrictive composites. In this paper, magnetostrictive composites with different particle size ranges and mass ratio were prepared and tested. The results show that the magnetostrictive composites had the best performance when the particle size range was 149–500 μm and the mass ratio of epoxy resin to TD powder was 1:5. Finally, this paper tested the performance of the sensor. The sensitivity, repeatability, and linear working range of the sensor reached 0.104 με/A, 2.51%, and 100–900 A respectively, when only 0.31 g of TD powder was employed. This means that current measurement with low cost, high sensitivity, and wide range was realized.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Zhang Luo ◽  
Renqiang Li ◽  
Minghao Tai ◽  
...  

In order to adapt the frequency requirements of fast switching valve applied to the digital hydraulic converter, a 2/2 way fast switching valve driven by giant magnetostrictive material was performed in this article. The finite element simulation of the fast switching valve’s electromagnetic field and flow field was carried out. In addition, the integrated analytical model of giant magnetostrictive material–fast switching valve coupling with enhanced transmission line method was built in MATLAB/Simulink. The displacement and pressure-flowrate characteristics of giant magnetostrictive material–fast switching valve were discussed and validated in the experiments. The results indicated that the nonlinearity magnetization presents a positive relationship with the driving current before it reaches the saturated state, and the hydraulic force at the expected opening is far less than output force caused by magnetostrictive strain. The experimental valve displacements are in good agreement with obtained results from analytical model, which reveals that the analytical model is accurate enough to predict the main performances of the fast switching valve. The maximum valve displacement without supply pressure is up to 68 µm, which attenuates moderately with the growth of supply pressure. The experimental responses of the displacement and the pressure of giant magnetostrictive material–fast switching valve are less than 1 ms. The amplitude of output flowrate is 8.1 L/min at the frequency of 100 Hz when the pressure drop across giant magnetostrictive material–fast switching valve is 6 MPa theoretically. Similarly, the maximum transient flowrate derived from experiments reaches 8.2 L/min at pressure drop across giant magnetostrictive material–fast switching valve of 5.9 MPa, which is basically consistent with that predicted by analytical model. These reveal that the giant magnetostrictive material–fast switching valve can be utilized in the digital hydraulic converter to improve the system’s efficiency.


Sign in / Sign up

Export Citation Format

Share Document