scholarly journals Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Kimberley L. Burrow ◽  
Judith A. Hoyland ◽  
Stephen M. Richardson

Bone marrow-derived mesenchymal stem cells (MSCs) and adipose-derived multipotent/mesenchymal stem cells (ASCs) have been proposed as the ideal cell types for a range of musculoskeletal tissue engineering and regenerative medicine therapies. However, extensive in vitro expansion is required to generate sufficient cells for clinical application and previous studies have demonstrated differences in the proliferative capacity and the impact of expansion on differentiation capacity of both MSCs and ASCs. Significantly, these studies routinely use cells from different donors, making direct comparisons difficult. Importantly, this study directly compared the proliferative capacity and multipotency of human MSCs and ASCs from the same donors to determine how each cell type was affected by in vitro expansion. The study identified that ASCs were able to proliferate faster and undergo greater population doublings than donor-matched MSCs and that senescence was primarily driven via telomere shortening and upregulation of p16ink4a. Both donor-matched MSCs and ASCs were capable of trilineage differentiation early in cultures; however, while differentiation capacity diminished with time in culture, ASCs retained enhanced capacity compared to MSCs. These findings suggest that ASCs may be the most appropriate cell type for musculoskeletal tissue engineering and regenerative medicine therapies due to their enhanced in vitro expansion capacity and limited loss of differentiation potential.

2017 ◽  
Vol 118 (10) ◽  
pp. 3072-3079 ◽  
Author(s):  
Annelise Pezzi ◽  
Bruna Amorin ◽  
Álvaro Laureano ◽  
Vanessa Valim ◽  
Alice Dahmer ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Subhash C. Juneja ◽  
Sowmya Viswanathan ◽  
Milan Ganguly ◽  
Christian Veillette

The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon’s skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs) by researchers and clinicians.


2014 ◽  
Vol 22 (3) ◽  
pp. 218-227 ◽  
Author(s):  
Roberta Targa STRAMANDINOLI-ZANICOTTI ◽  
André Lopes CARVALHO ◽  
Carmen Lúcia Kuniyoshi REBELATTO ◽  
Laurindo Moacir SASSI ◽  
Maria Fernanda TORRES ◽  
...  

Author(s):  
Minwook Kim ◽  
Jason A. Burdick ◽  
Robert L. Mauck

Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.


2012 ◽  
Vol 35 (3) ◽  
pp. 463-469 ◽  
Author(s):  
Stefan Peter ◽  
Andy M. Scutt ◽  
Phillip C. Wright ◽  
Catherine A. Biggs

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Song Xu ◽  
Ann De Becker ◽  
Ben Van Camp ◽  
Karin Vanderkerken ◽  
Ivan Van Riet

Compared to bone marrow (BM) derived mesenchymal stem cells (MSCs) from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs) is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F) assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs) are uniformly positive for stem cell antigen-1 (Sca-1), CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.


Sign in / Sign up

Export Citation Format

Share Document