scholarly journals Niemeier Lattices in the Free Fermionic Heterotic–String Formulation

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Panos Athanasopoulos ◽  
Alon E. Faraggi

The spinor–vector duality was discovered in free fermionic constructions of the heterotic string in four dimensions. It played a key role in the construction of heterotic–string models with an anomaly-free extra Z′ symmetry that may remain unbroken down to low energy scales. A generic signature of the low scale string derived Z′ model is via diphoton excess that may be within reach of the LHC. A fascinating possibility is that the spinor–vector duality symmetry is rooted in the structure of the heterotic–string compactifications to two dimensions. The two-dimensional heterotic–string theories are in turn related to the so-called moonshine symmetries that underlie the two-dimensional compactifications. In this paper, we embark on exploration of this connection by the free fermionic formulation to classify the symmetries of the two-dimensional heterotic–string theories. We use two complementary approaches in our classification. The first utilises a construction which is akin to the one used in the spinor–vector duality. Underlying this method is the triality property of SO(8) representations. In the second approach, we use the free fermionic tools to classify the twenty-four-dimensional Niemeier lattices.

Fractals ◽  
1996 ◽  
Vol 04 (04) ◽  
pp. 469-475 ◽  
Author(s):  
ZBIGNIEW R. STRUZIK

The methodology of the solution to the inverse fractal problem with the wavelet transform1,2 is extended to two-dimensional self-affine functions. Similar to the one-dimensional case, the two-dimensional wavelet maxima bifurcation representation used is derived from the continuous wavelet decomposition. It possesses translational and scale invariance necessary to reveal the invariance of the self-affine fractal. As many fractals are naturally defined on two-dimensions, this extension constitutes an important step towards solving the related inverse fractal problem for a variety of fractal types.


1990 ◽  
Vol 05 (07) ◽  
pp. 1341-1361 ◽  
Author(s):  
S.M. KUZENKO ◽  
O.A. SOLOVIEV

We present a covariant action describing chiral bosonic string theories in space-time dimensions d<26 and a covariant (1, 0) supersymmetric action describing heterotic string theories in space-time of dimension d<10. The anomaly cancellation conditions are found. In the four-dimensional case the supersymmetric action corresponds to the SO(44) heterotic string theory.


2001 ◽  
Author(s):  
Robert Vance ◽  
Indrek S. Wichman

Abstract A linear stability analysis is performed on two simplified models representing a one-dimensional flame between oxidizer and fuel reservoirs and a two-dimensional “edge-flame” between the same reservoirs but above a cold, inert wall. Comparison of the eigenvalue spectra for both models is performed to discern the validity of extending the results from the one-dimensional problem to the two-dimensional problem. Of primary interest is the influence on flame stability of thermal-diffusive imbalances, i.e. non-unity Lewis numbers. Flame oscillations are observed when Le &gt; 1, and cellular flames are witnessed when Le &lt; 1. It is found that when Le &gt; 1 the characteristics of flame behavior are consistent between the two models. Furthermore, when Le &lt; 1, the models are found to be in good agreement with respect to the magnitude of the critical wave numbers. Results from the coarse mesh analysis of the two-dimensional system are presented and compared to the one-dimensional eigenvalue spectra. Additionally, an examination of low reactant convection is undertaken. It is concluded that for low flow rates the behavior in one and two dimensions are similar qualitatively and quantitatively.


1995 ◽  
Vol 10 (05) ◽  
pp. 367-378 ◽  
Author(s):  
M. CADONI ◽  
S. MIGNEMI

We discuss the properties of Lorentzian and Euclidean black hole solutions of a generalized two-dimensional dilaton gravity action containing a modulus field, which arises from the compactification of heterotic string models. The duality symmetries of these solutions are also investigated.


1996 ◽  
Vol 11 (28) ◽  
pp. 2285-2296
Author(s):  
HIDEO MIYATA ◽  
NORIYASU OHTSUBO

Superstring models on Weyl orbifolds are investigated in [Formula: see text] heterotic string theories. Some of the Weyl orbifold models are shown to be consistent with worldsheet supersymmetry, N=1 spacetime supersymmetry and modular invariance. Two ways of embedding in [Formula: see text] are studied and residual gauge groups are classified.


Sign in / Sign up

Export Citation Format

Share Document