scholarly journals Lattice Boltzmann Simulation of Natural Convection in an Annulus between a Hexagonal Cylinder and a Square Enclosure

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
L. El Moutaouakil ◽  
Z. Zrikem ◽  
A. Abdelbaki

Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal (case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1≤B≤0.4), and the Rayleigh number (103≤Ra≤106).

2019 ◽  
Vol 29 (10) ◽  
pp. 3659-3684 ◽  
Author(s):  
Rasul Mohebbi ◽  
Mohsen Izadi ◽  
Nor Azwadi Che Sidik ◽  
Gholamhassan Najafi

Purpose This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure. Design/methodology/approach The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence. Findings Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A = 0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra = 103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6). Originality/value Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Ramanathan Vishnampet ◽  
Arunn Narasimhan ◽  
V. Babu

Lattice Boltzmann method (LBM) is employed to investigate natural convection inside porous medium enclosures at high Rayleigh numbers. Volume averaged porous medium model is coupled with the lattice Boltzmann formulation of the momentum and energy equations for fluid flow. A parallel implementation of the single relaxation time LBM is used, which allows the porous medium modified Rayleigh number Ram to be as high as 108. Heat transfer results in the form of the enclosure averaged Nusselt number Nu are obtained for higher modified Rayleigh numbers 104≤Ram≤108. The Nu values are compared with values in the absence of the form drag term. The form drag due to the porous medium is found to influence Nu considerably. The effect of the form drag on Nu is studied by using a form drag modified Rayleigh number RaC (extended from Ram). Utilizing the results for Nu in the high Ram range, a correlation is proposed between Nu and RaC for Darcy numbers 10−6≤Da≤10−2, encompassing the non-Darcy flow regime.


2011 ◽  
Vol 322 ◽  
pp. 61-67 ◽  
Author(s):  
Jiu Gu Shao ◽  
Yang Liu ◽  
You Sheng Xu

The problem of the natural convection heat transfer for phase-change in a square filled with heterogeneously porous medium is solved by lattice Boltzmann method. The lattice Boltzmann equation is governed by the heat conduction equation combined with enthalpy formation. The velocity of liquid part is fully coupled with the temperature distribution through relaxation time. It is found that the high Ra number has significantly impact on the heat transfer and convection, but the low Ra number has little influence on the natural convection. The porosity of the middle porous medium is nothing to do with the heat transfer and convection. The result is of great importance to engineering interest and also provides a new solution to phase transition.


Author(s):  
Pawan Karki ◽  
Ajay Kumar Yadav ◽  
D. Arumuga Perumal

This study involves the effect of adiabatic obstacles on two-dimensional natural convection in a square enclosure using lattice Boltzmann method (LBM). The enclosure embodies square-shaped adiabatic obstacles with one, two, and four in number. The single obstacle in cavity is centrally placed, whereas for other two configurations, a different arrangement has been made such that the core fluid zone is not hampered. The four boundaries of the cavity considered here consist of two adiabatic horizontal walls and two differentially heated vertical walls. The current study covers the range of Rayleigh number (103 ≤ Ra ≤ 106) and a fixed Prandtl number of 0.71 for all cases. The effect of size of obstacle is studied in detail for single obstacle. It is found that the average heat transfer along the hot wall increases with the increase in size of obstacle until it reaches an optimum value and then with further increase in size, the heat transfer rate deteriorates. Study is carried out to delineate the comparison between the presences of obstacle in and out of the conduction dominant zone in the cavity. The number of obstacles (two and four) outside of this core zone shows that heat transfer decreases despite the obstacle being adiabatic in nature.


Author(s):  
Zheng Li ◽  
Mo Yang ◽  
Yuwen Zhang

Purpose – The purpose of this paper is to test an efficiency algorithm based on lattice Boltzmann method (LBM) and using it to analyze two-dimensional natural convection with low Prandtl number. Design/methodology/approach – Steady state or oscillatory results are obtained using double multiple-relaxation-time thermal LBM. The velocity and temperature fields are solved using D2Q9 and D2Q5 models, respectively. Findings – With different Rayleigh number, the tested natural convection can either achieve to steady state or oscillatory. With fixed Rayleigh number, lower Prandtl number leads to a weaker convection effect, longer oscillation period and higher oscillation amplitude for the cases reaching oscillatory solutions. At fixed Prandtl number, higher Rayleigh number leads to a more notable convection effect and longer oscillation period. Originality/value – Double multiple-relaxation-time thermal LBM is applied to simulate the low Prandtl number (0.001-0.01) fluid natural convection. Rayleigh number and Prandtl number effects are also investigated when the natural convection results oscillate.


Author(s):  
Ayoub Msaddak ◽  
Mohieddine Ben Salah ◽  
Ezeddine Sediki

Lattice Boltzmann method (LBM) is performed to study numerically combined natural convection and surface radiation inside an inclined two-dimensional open square cavity. The cavity is heated by a constant temperature at the wall facing the opening. The walls normal to the heated surface are assumed to be adiabatic, diffuse, gray, and opaque while the open boundary is assumed to be black at ambient temperature. A Bathnagar, Gross and Krook (BGK) collision model with double distribution function (D2Q9-D2Q4) is adopted. Effects of surface radiation, inclination angle, and Rayleigh number on the heat transfer are analyzed and discussed. Results are presented in terms of isotherms, streamlines, and Nusselt number. It was found that the presence of surface radiation enhances the heat transfer. The convective Nusselt number decreases with increasing surface emissivity as well as with Rayleigh number, while the total Nusselt number increases with increasing surface emissivity and Rayleigh number. The inclination angle has also a significant effect on flow and heat transfer inside the cavity. However, the magnitude of total heat transfer decreases considerably when open cavity is tilted downward.


Sign in / Sign up

Export Citation Format

Share Document