scholarly journals Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
A. Cavallo ◽  
G. Canciello ◽  
B. Guida

In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU) that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator) to generator mode (i.e., when the battery pumps energy on the high-voltage bus) is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

2013 ◽  
Vol 860-863 ◽  
pp. 608-612
Author(s):  
Hai Bo Wang ◽  
Xiu Yang ◽  
Jun Liu ◽  
Jie Chen

Hybrid energy storage system (HESS) including battery and super-capacitor can take advantages of both high energy density and high power density. In the stand-alone PV micro-grid, in which two buck/boost bidirectional converters are connected to the DC bus directly, a novel energy management scheme is proposed. After filtering the fluctuating power of the HESS, charge and discharge currents of the battery are controlled by hysteresis control method, the super-capacitor supplies the difference of the power. To leveling off the fluctuating power output of photovoltaic system and control the voltage of the DC bus, a new control strategy applied to the bidirectional converter of the super capacitor is put forward. The feed-forward loops of input voltage, load current and output voltage are introduced to improve the response speed and stability of the system. Results of the simulation show the effectiveness of the proposed energy management and control strategy.


2014 ◽  
Vol 898 ◽  
pp. 896-899
Author(s):  
Zhi Yu Huang ◽  
Xiao Hua Pu

Regarding to the electric vehicle (EV) with dual-energy storage system (DESS) composed of batteries and ultra-capacitors, study on the structure and drive modes of DESS, after a detailed analysis of energy storage system based on power, resistance and constraints in driving, establish a mathematical model of energy management system of EV with DESS, and an energy management based on the fuzzy control strategy is designed. Finally, a simulation of EV with DESS by using ADVISOR simulation platform is studied, whose results show that the EV with DESS based on fuzzy control strategy can be more effective in distributing power between energy storage systems, and the dynamic performance as well as economic efficiency are also improved


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 653 ◽  
Author(s):  
Elhoussin Elbouchikhi ◽  
Yassine Amirat ◽  
Gilles Feld ◽  
Mohamed Benbouzid ◽  
Zhibin Zhou

Flywheel is a promising energy storage system for domestic application, uninterruptible power supply, traction applications, electric vehicle charging stations, and even for smart grids. In fact, recent developments in materials, electrical machines, power electronics, magnetic bearings, and microprocessors offer the possibility to consider flywheels as a competitive option for electric energy storage, which can be of great interest for domestic applications in the near future. In this paper, a grid-tied flywheel-based energy storage system (FESS) for domestic application is investigated with special focus on the associated power electronics control and energy management. In particular, the overall PMSM-based flywheel configuration is reviewed and a controlling strategy was experimentally implemented using DS1104 controller board from dSPACE. Two case studies were considered for power peak shaving and power backup at domestic level. A lab-scale prototype was built to validate the proposal. The achieved results are presented and discussed to demonstrate the possibilities offered by such an energy storage system for domestic application.


2021 ◽  
pp. 1-11
Author(s):  
Qiao Zhang ◽  
Xiaoliang Cheng ◽  
Shaoyi Liao

Hybrid energy storage system supplies a feasible solution to battery peak current reduction by introducing supercapacitor as auxiliary energy source. Energy management control strategy is a key technology for guaranteeing performance. In this paper, we describe a predictive energy management strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles. To utilize the supercapacitor reasonably, Markov chain model is proposed to predict the future load power during a driving cycle. The predictive results are subsequently used by power distribution strategy, which is designed using a low-pass filter and a fuzzy logic controller. The strategy model is developed under MATLAB/Simulink software environment. To validate the performance of the proposed control strategy, a comparison test is implemented based on a 72 V rated voltage hybrid energy storage system experimental platform. The results indicate that the battery peak currents by proposed predictive control strategy are reduced by 26.32%, 28.21% and 27.12% under the UDDS, SC03 and NEDC three driving cycles respectively.


Sign in / Sign up

Export Citation Format

Share Document