scholarly journals Thermoelastic Analysis for Two Collinear Cracks in an Orthotropic Solid Disturbed by Antisymmetrical Linear Heat Flow

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Bing Wu ◽  
Jun-gao Zhu ◽  
Daren Peng ◽  
Rhys Jones ◽  
Shi-hu Gao ◽  
...  

The problem of two collinear cracks in an orthotropic solid under antisymmetrical linear heat flow is investigated. It is assumed that there exists thermal resistance to heat conduction through the crack region. Applying the Fourier transform, the thermal coupling partial differential equations are transformed to dual integral equations and then to singular integral equations. The crack-tip thermoelastic fields including the jumps of temperature and elastic displacements on the cracks and the mode II stress intensity factors are obtained explicitly. Numerical results show the effects of the geometries of the cracks and the dimensionless thermal resistance on the temperature change and the mode II stress intensity factors. Also, FEM solutions for the stress intensity factor K are used to compare with the solutions obtained using the method. It is revealed that the friction in closed crack surface region should be considered in analyzing the stress intensity factor K.

2015 ◽  
Vol 07 (03) ◽  
pp. 1550051 ◽  
Author(s):  
Wen Hua ◽  
Jigang Xu ◽  
Shiming Dong ◽  
Jizhou Song ◽  
Qingyuan Wang

An analytical model, verified by the finite element method, is developed to study the effect of confining pressure on stress intensity factors for the cracked Brazilian disk. The closed-form expressions for stress intensity factors under both confining pressure and diametric forces are obtained based on the weight function method. The results show that the confining pressure has no effect on the mode II stress intensity factor; however, the mode I stress intensity factor decreases with the increase of confining pressure and the change may be above 100% for a large confining pressure. In addition, the effect of confining pressure on the loading condition of pure mode II crack is also investigated. It is shown that the critical loading angle for pure mode II crack decreases as the confining pressure increases. Depending on the magnitude of confining pressure, the failure problem of a disk may be no longer a pure fracture problem. These results have established the theoretical foundation to measure the fracture toughness of materials under confining pressure.


1990 ◽  
Vol 57 (2) ◽  
pp. 354-358 ◽  
Author(s):  
An-Yu Kuo

Effects of crack surface heat conductance on stress intensity factors of modes I, II, and III are investigated. The crack problem is first solved by assuming perfect (infinite) heat conductance at crack surfaces. Finite heat conductance at crack surfaces is then accounted for by imposing a set of distributed dipoles at the crack surfaces. Distribution function of the dipoles is the solution of a Fredholm integral equation. It is shown that, for cracks in a homogeneous, isotropic, linear elastic solid, the degree of thermal conductivity at crack surfaces will affect the magnitude of mode I and mode II stress intensity factors but not mode III stress intensity factor. It is also shown that, for a geometrically symmetric cracked solid, only the mode II stress intensity factor will be influenced by different crack surface heat conductance even if the thermal loading is not symmetric. More importantly, for a given material thermal conductivity (K) and crack surface heat convection coefficient (h), effects of crack surface heat conductance on stress intensity factors is found to depend upon crack size. This “size effect” implies that, for a given set of K and h, an extremely small crack can be treated as if the crack surfaces are insulated and a very long crack can be treated as if the crack surfaces are perfectly heat conductive. As an example, the problem of a finite crack in an infinite plate subjected to a constant temperature gradient at infinity is studied.


1987 ◽  
Vol 109 (1) ◽  
pp. 36-39
Author(s):  
C. A. Bigelow

Stress-intensity factors are determined for an infinite cracked orthotropic sheet adhesively bonded to an orthotropic stringer. Since the stringer is modeled as a semi-infinite sheet, the solution is most appropriate for a crack tip located near a stringer edge. Both adherends are treated as homogeneous, orthotropic media which are representative of many fiber-reinforced composite materials. The complex variable theory of elasticity was used to obtain a set of integral equations describing the problem. The integral equations are replaced by an equivalent set of algebraic equations, which are solved to obtain the shear stress distribution in the adhesive layer. From these adhesive stresses, the stress-intensity factors are found. A parametric study is conducted to determine the sensitivity of the system to material properties and specimen configuration. Unless the crack tip is very close to or under the stringer, the stress-intensity factor is approximately that of the unstiffened sheet. However, as the crack propagates beneath the stringer, the stress-intensity factor decreases significantly. Increasing the stringer stiffness or the adhesive stiffness also decreases the stress-intensity factor.


Author(s):  
R L Burguete ◽  
E A Patterson

Stress frozen photoelasticity has been used to model dovetail compressor blade fixings. During loading a known coefficient of friction was applied and the effect of the variation of this parameter on crack initiation and propagation was investigated. Data were recorded from the specimen using an automated computer aided polariscope based on the method of phase stepping. Isochromatic and isoclinic data were collected and used to determine the stress distribution, the stress intensity factor and the crack propagation direction. The method to predict the direction of crack propagation has been improved so that photoelastic data can be used reliably for this purpose. Three values of the coefficient of friction were used for two different dovetail geometries. It was found that the initial values of the mode II stress intensity factors were higher for a lower friction coefficient. An increase in crack length produced a corresponding decrease in the mode I stress intensity factor and a decrease in the mode II value. It was concluded that the coefficient of friction influenced crack growth at all stages of crack growth because it affects the relative levels of the mode I and mode II stress intensity factors. This has an effect on the direction of the maximum principal stress direction and so on the direction of crack propagation.


Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Itaru Muroya ◽  
Kazuo Ogawa

Alloy 600 weld joints have potential for primary water stress corrosion cracks (PWSCC). At the present time it has been understood that PWSCC generates and propagates in the Alloy 600 base metal and the Alloy 600 weld metal and there has been no observation of cracking the stainless and the low alloy steel. For the life time evaluation of the pipes or components the crack extension analysis is required. To perform the axial crack extension analysis the stress intensity database or estimation equation corresponding to the extension crack shape is needed. From the PWSCC extension nature mentioned above, stress intensity factors of the conventional handbooks are not suitable because most of them assume a semi-elliptical crack and the maximum aspect ratio crack depth/crack half length is one (The evaluation in this paper had been performed before API 579-1/ASME FFS was published). Normally, with the advance of crack extension in the thickness direction at the weld joint, the crack aspect ratio exceeds one and the K-value of the conventional handbook can not be applied. Even if those equations are applied, the result would be overestimated. In this paper, considering characteristics of PWSCC’s extension behavior in the welding material, the axial crack was modeled in the FE model as a rectangular shape and the stress intensity factors at the deepest point were calculated with change of crack depth. From the database of the stress intensity factors, the simplified equation of stress intensity factor with parameter of radius/thickness and thickness/weld width was proposed.


Author(s):  
Daniel M. Blanks

An API 579-1/ASME FFS-1 Failure Assessment Diagram based Fitness-for-Service assessment was carried out on an embedded crack-like flaw found in a nozzle to shell weld in a pressure vessel. Stress intensity factors were initially calculated by utilizing stress results from a Finite Element Analysis (FEA) of an uncracked configuration, with the standard embedded crack stress intensity factor solution given in API 579-1/ASME FFS-1. Due to the complex nozzle geometry and flaw size, a second analysis was carried out, incorporating a crack into the FEA model, to calculate the stress intensity factors and evaluate if the standard solution could be applied to this geometry. A large difference in the resulting stress intensity factors was observed, with those calculated by the FEA with the crack incorporated into the model to be twice as high as those calculated by the standard solutions, indicating the standard embedded crack stress intensity factor solution may be non-conservative in this case. An investigation was carried out involving a number of studies to determine the cause of the difference. Beginning with an elliptical shaped embedded crack in a plate, the stress intensity factor calculated with an idealized 3D crack mesh agreed with the API 579-1/ASME FFS-1 solution. Examining other crack locations, and crack shapes, such as a constant depth embedded crack, revealed how the solution began to differ. The greatest difference was found when considering a crack mesh with a small component height (i.e. the distance measured perpendicular from the crack face to the top of the mesh). A close agreement was then found between the stress intensity factors calculated in the nozzle model and an idealized crack mesh with component heights representative of the true geometry. This revealed that reduced structural stiffness is a key factor in the calculation of the stress intensity factors for this geometry, due to the close proximity of the embedded crack to the inner surface of the nozzle. It was found that this reduction is potentially significant even with relatively small crack sizes. This paper details the investigation, and aims to provide the reader with an awareness of situations when the standard stress intensity factor solutions may no longer be valid, and offers general recommendations to consider when calculating stress intensity factors in these situations.


Author(s):  
Do-Jun Shim ◽  
Matthew Kerr ◽  
Steven Xu

Recent studies have shown that the crack growth of PWSCC is mainly driven by the weld residual stress (WRS) within the dissimilar metal weld. The existing stress intensity factor (K) solutions for surface cracks in pipe typically require a 4th order polynomial stress distribution through the pipe wall thickness. However, it is not always possible to accurately represent the through thickness WRS with a 4th order polynomial fit and it is necessary to investigate the effect of the WRS fitting on the calculated stress intensity factors. In this paper, two different methods were used to calculate the stress intensity factor for a semi-elliptical circumferential surface crack in a pipe under a given set of simulated WRS. The first method is the Universal Weight Function Method (UWFM) where the through thickness WRS distribution can be represented as a piece-wise cubic fit. In the second method, the through thickness WRS profiles are represented as a 4th order polynomial curve fit (both using the entire wall thickness data and only using data up to the crack-tip). In addition, three-dimensional finite element (FE) analyses (using the simulated weld residual stress) were conducted to serve as a reference solution. The results of this study demonstrate the potential sensitivity of stress intensity factors to 4th order polynomial fitting artifacts. The piece-wise WRS representations used in the UWFM was not sensitive to these fitting artifacts and the UWFM solutions were in good agreement with the FE results.


2021 ◽  
Author(s):  
Murat Bozkurt ◽  
David Nash ◽  
Asraf Uzzaman

Abstract Pressure vessels can be subjected to various external local forces and moments acting in combination with main internal pressure. As a result of the stress system set up, and in the presence of attachment welds, surface cracks can occur on the interior and exterior walls. If these cracks cannot be detected at an early stage, there is a real potential for the vessel to rupture with obvious dangerous consequences. The behavior of fractured or geometric discontinuity structures can be investigated with linear elastic fracture mechanics (LEFM) parameters. The stress intensity factor (SIF) is the leading one, and with correct calculations, it can produce the stress intensity in the crack tip region. In cylinder-cylinder intersections subject to local loads, the maximum stress distribution occurs in and around these opening areas and failure in the system usually occurs in this region. Using this approach, the present study develops three-dimensional mixed mode stress intensity factor solutions on for external cracks on nozzle joints in cylindrical pressure vessels nozzle junctions for a variety of geometrical configurations. This was undertaken using a finite element approach and employing a bespoke software tool and solver, FCPAS - Fracture and Crack Propagation Analysis System — to create the finite element mesh and propagation characteristics. From this, a parameter study examining the influence of the crack shape, size and position was carried out with a fixed pressure vessel nozzle cylinder intersection geometry configuration and the appropriate stress intensity factors identified and reported. The FCPAS tool is shown to be an effective approach to modelling and characterizing cracks in pressure vessel nozzles.


Sign in / Sign up

Export Citation Format

Share Document