scholarly journals Experimental Study on Interfacial Area Transport of Two-Phase Flow under Vibration Conditions

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiu Xiao ◽  
Qingzi Zhu ◽  
Shao-Wen Chen ◽  
Mamoru Ishii ◽  
Yajun Zhang ◽  
...  

An experimental study on air-water two-phase flow under vibration condition has been conducted using double-sensor conductivity probe. The test section is an annular geometry with hydraulic diameter of 19.1 mm. The vibration frequency ranges from 0.47 Hz to 2.47 Hz. Local measurements of void fraction, interfacial area concentration (IAC), and Sauter mean diameter have been performed along one radius in the vibration direction. The result shows that local parameters fluctuate continuously around the base values in the vibration cycle. Additional bubble force due to inertia is used to explain lateral bubble motions. The fluctuation amplitudes of local void fraction and IAC increase significantly with vibration frequency. The radial distribution of local parameters at the maximum vibration displacement is specifically analyzed. In the void fraction and IAC profiles, the peak near the inner wall is weakened or even disappearing and a strong peak skewed to outer wall is gradually observed with the increase of vibration frequency. The nondimensional peak void fraction can reach a maximum of 49% and the mean relative variation of local void fraction can increase to more than 29% as the vibration frequency increases to 2.47 Hz. But the increase of vibration frequency does not bring significant change to bubble diameter.

2017 ◽  
Author(s):  
Guojun Yu ◽  
Wuyue Ren ◽  
Jiawei Bian ◽  
G. H. Su ◽  
Wenxi Tian ◽  
...  

Author(s):  
Tatsuya Hazuku ◽  
Naohisa Tamura ◽  
Norihiro Fukamachi ◽  
Tomoji Takamasa ◽  
Takashi Hibiki ◽  
...  

Accurate prediction of the interfacial area concentration is essential to successful development of the interfacial transfer terms in the two-fluid model. Mechanistic modeling of the interfacial area concentration entirely relies on accurate local flow measurements over extensive flow conditions and channel geometries. From this point of view, accurate measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward bubbly flows using a 1.02 mm-diameter pipe. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 1.02 m/s to 4.89 m/s and from 0.980% to 24.6%, respectively. The obtained data give near complete information on the time-averaged local hydrodynamic parameters of two-phase flow. These data can be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. As the first step to understand the flow characteristics in mini-channels, the applicability of the existing drift-flux model, interfacial area correlation, and frictional pressure correlation was examined by the data obtained in the mini-channel.


Author(s):  
Hiroshi Goda ◽  
Seungjin Kim ◽  
Sidharth S. Paranjape ◽  
Joshua P. Finch ◽  
Mamoru Ishii ◽  
...  

The local interfacial structure for vertical air-water co-current downward two-phase flow was investigated under adiabatic conditions. A multi-sensor conductivity probe was utilized in order to acquire the local two-phase flow parameters. The present experimental loop consisted of 25.4 mm and 50.8 mm ID round tubes as test sections. The measurement was performed at three axial locations: L/D = 13, 68 and 133 for the 25.4 mm ID loop and L/D = 7, 34, 67 for the 50.8 mm ID loop, in order to study the axial development of the flow. A total of 7 and 10 local measurement points along the tube radius were chosen for the 25.4 mm ID loop and the 50.8 mm ID loop, respectively. The experimental flow conditions were determined within bubbly flow regime. The acquired local parameters included the void fraction, interfacial area concentration, bubble interface frequency, bubble Sauter mean diameter, and interfacial velocity.


Author(s):  
Dhruv C. Hoysall ◽  
Khoudor Keniar ◽  
Srinivas Garimella

Multiphase flow phenomena in single micro- and minichannels have been widely studied. Characteristics of two-phase flow through a large array of microchannels are investigated here. An air-water mixture is used to represent the two phases flowing through a microchannel array representative of those employed in practical applications. Flow distribution of the air and water flow across 52 parallel microchannels of 0.3 mm hydraulic diameter is visually investigated using high speed photography. Two microchannel configurations are studied and compared, with mixing features incorporated into the second configuration. Slug and annular flow regimes are observed in the channels. Void fractions and interfacial areas are calculated for each channel from these observations. The flow distribution is tracked at various lengths along the microchannel array sheets. Statistical distributions of void fraction and interfacial area along the microchannel array are measured. The design with mixing features yields improved flow distribution. Void fraction and interfacial area change along the length of the second configuration, indicating a change in fluid distribution among the channels. The void fraction and interfacial area results are used to predict the performance of different microchannel array configurations for heat and mass transfer applications. Results from this study can help inform the design of compact thermal-fluid energy systems.


1997 ◽  
Vol 119 (4) ◽  
pp. 916-922 ◽  
Author(s):  
T. Wilmarth ◽  
M. Ishii

Adiabatic concurrent vertical two-phase flow of air and water through narrow rectangular channels, gap widths 1 mm and 2 mm, was investigated. This study involved the observation of flow using a charge coupled device (CCD) camera. These images were then digitized and examined by applying an image processing technique to determine local average void fraction and local average interfacial area concentration. The void fraction data were then plotted using a drift flux plot to determine the distribution parameter and vapor drift velocity for each separate flow regime.


2021 ◽  
Author(s):  
Ghofrane Sekrani ◽  
Jean-Sebastien Dick ◽  
Sébastien Poncet ◽  
Sravankumar Nallamothu

Abstract Since most research investments in aeroengines have been targeted at the hot and cold sections, the oil system has remained an area poorly understood. Optimum sizing of the oil system can directly reduce the engine’s weight and specific fuel consumption while maximizing service life. The understanding of air/oil interaction in scavenge lines is required to influence the design of the oil systems and achieve those objectives. The challenge is in the existence of numerous possible flow regimes and phase interactions. In scavenge lines, a complex two-phase flow results from the interaction of sealing airflow and lubrication oil. Scavenge lines can have bends, junctions and sudden area changes which complicates their modeling by amplifying pressure gradients and turbulence generation, and causing the flow to change morphology (annular, slug, stratified, bubbly, mist, etc.). Several multiphase flow approaches have been developed to model two-phase flow in straight scavenge lines. However, up until now, no methodology is preferred by the community for simulating two-phase flow in such application. There are still many unknowns regarding the modeling of turbulence, phase interaction and the compressibility of immiscible mixtures such as air and oil. The present study compares the performance of two numerical models: Volume of Fluid (VOF) and Algebraic Interfacial Area Density (AIAD), for simulating the air/oil flow in a suddenly expanding scavenge line against the experimental data of Ahmed et al. [1–2]. The AIAD model is a two-fluid Eulerian approach newly implemented on Ansys Fluent. Discrepancies between the two models for predicting pressure loss and void fraction are evaluated and discussed into details. The flow regime before and after the sudden expansion is identified using iso-surfaces of the void-fraction and compared against visual data. Based on the results presented, recommendations are formulated for further work regarding the calibration of AIAD modeling parameters.


Sign in / Sign up

Export Citation Format

Share Document