scholarly journals Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Aleksandra Kezić ◽  
Natasa Stajic ◽  
Friedrich Thaiss

Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.

Author(s):  
Nguyen Mai ◽  
Sara A. Knowlden ◽  
Kathleen Miller-Rhodes ◽  
Viollandi Prifti ◽  
Max Sims ◽  
...  

2015 ◽  
Vol 99 (12) ◽  
pp. 2523-2533 ◽  
Author(s):  
Ricardo C. Gehrau ◽  
Valeria R. Mas ◽  
Catherine I. Dumur ◽  
Jihee L. Suh ◽  
Ashish K. Sharma ◽  
...  

PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3596 ◽  
Author(s):  
Wilco P. Pulskens ◽  
Gwendoline J. Teske ◽  
Loes M. Butter ◽  
Joris J. Roelofs ◽  
Tom van der Poll ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Aleksandra Kezic ◽  
Ivan Spasojevic ◽  
Visnja Lezaic ◽  
Milica Bajcetic

Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.


2000 ◽  
Vol 279 (3) ◽  
pp. L528-L536 ◽  
Author(s):  
Scott D. Ross ◽  
Irving L. Kron ◽  
James J. Gangemi ◽  
Kimberly S. Shockey ◽  
Mark Stoler ◽  
...  

A central role for nuclear factor-κB (NF-κB) in the induction of lung inflammatory injury is emerging. We hypothesized that NF-κB is a critical early regulator of the inflammatory response in lung ischemia-reperfusion injury, and inhibition of NF-κB activation reduces this injury and improves pulmonary graft function. With use of a porcine transplantation model, left lungs were harvested and stored in cold Euro-Collins preservation solution for 6 h before transplantation. Activation of NF-κB occurred 30 min and 1 h after transplant and declined to near baseline levels after 4 h. Pyrrolidine dithiocarbamate (PDTC), a potent inhibitor of NF-κB, given to the lung graft during organ preservation (40 mmol/l) effectively inhibited NF-κB activation and significantly improved lung function. Compared with control lungs 4 h after transplant, PDTC-treated lungs displayed significantly higher oxygenation, lower Pco2, reduced mean pulmonary arterial pressure, and reduced edema and cellular infiltration. These results demonstrate that NF-κB is rapidly activated and is associated with poor pulmonary graft function in transplant reperfusion injury, and targeting of NF-κB may be a promising therapy to reduce this injury and improve lung function.


Sign in / Sign up

Export Citation Format

Share Document