scholarly journals Comparisons of Faulting-Based Pavement Performance Prediction Models

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Weina Wang ◽  
Yu Qin ◽  
Xiaofei Li ◽  
Di Wang ◽  
Huiqiang Chen

Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR) model, artificial neural network (ANN) model, and Markov Chain (MC) model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.

2021 ◽  
Vol 13 (9) ◽  
pp. 5248
Author(s):  
Rita Justo-Silva ◽  
Adelino Ferreira ◽  
Gerardo Flintsch

Road transportation has always been inherent in developing societies, impacting between 10–20% of Gross Domestic Product (GDP). It is responsible for personal mobility (access to services, goods, and leisure), and that is why world economies rely upon the efficient and safe functioning of transportation facilities. Road maintenance is vital since the need for maintenance increases as road infrastructure ages and is based on sustainability, meaning that spending money now saves much more in the future. Furthermore, road maintenance plays a significant role in road safety. However, pavement management is a challenging task because available budgets are limited. Road agencies need to set programming plans for the short term and the long term to select and schedule maintenance and rehabilitation operations. Pavement performance prediction models (PPPMs) are a crucial element in pavement management systems (PMSs), providing the prediction of distresses and, therefore, allowing active and efficient management. This work aims to review the modeling techniques that are commonly used in the development of these models. The pavement deterioration process is stochastic by nature. It requires complex deterministic or probabilistic modeling techniques, which will be presented here, as well as the advantages and disadvantages of each of them. Finally, conclusions will be drawn, and some guidelines to support the development of PPPMs will be proposed.


Author(s):  
Ram B. Kulkarni ◽  
Richard W. Miller

The progress made over the past three decades in the key elements of pavement management systems was evaluated, and the significant improvements expected over the next 10 years were projected. Eight specific elements of a pavement management system were addressed: functions, data collection and management, pavement performance prediction, economic analysis, priority evaluation, optimization, institutional issues, and information technology. Among the significant improvements expected in pavement management systems in the next decade are improved linkage among, and better access to, databases; systematic updating of pavement performance prediction models by using data from ongoing pavement condition surveys; seamless integration of the multiple management systems of interest to a transportation organization; greater use of geographic information and Global Positioning Systems; increasing use of imaging and scanning and automatic interpretation technologies; and extensive use of formal optimization methods to make the best use of limited resources.


Author(s):  
Stephen B. Seeds ◽  
Rudramunniyappa Basavaraju ◽  
Jon A. Epps ◽  
Richard M. Weed

The primary objective of the FHWA-sponsored WesTrack project is to further the development of performance-related specifications for hotmix asphalt construction. This objective is being achieved, in part, through the accelerated loading of a full-scale test track facility in northern Nevada. Twenty-six hot-mix asphalt test sections constructed to meet the criteria set forth in a statistically based experiment design are providing performance data that will be used to improve existing (or develop new) pavement performance prediction relationships that better account for the effects that “off-target” values of asphalt content, air-void content, and aggregate gradation have on such distress factors as fatigue cracking, permanent deformation, roughness, raveling, and tirepavement friction. The concept of the planned new performance-related specification and how it will incorporate the modified pavement performance prediction models are described. The current plan for assessing contractor pay adjustments (i.e., penalties and bonuses) based on data collected from the as-constructed pavement is also discussed.


Sign in / Sign up

Export Citation Format

Share Document