scholarly journals Corrigendum to “Using Sidereal Rotation Period Expressions to Calculate the Sun’s Rotation Period through Observation of Sunspots”

2017 ◽  
Vol 2017 ◽  
pp. 1-2
Author(s):  
Tsung-Ching Chen ◽  
Jiann-Shing Lih ◽  
Tien-Tang Chang ◽  
Chih-Hung Yang ◽  
Ming-Chi Lu ◽  
...  
2018 ◽  
Vol 620 ◽  
pp. A91 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš

Context. In addition to stellar data, Gaia Data Release 2 (DR2) also contains accurate astrometry and photometry of about 14 000 asteroids covering 22 months of observations. Aims. We used Gaia asteroid photometry to reconstruct rotation periods, spin axis directions, and the coarse shapes of a subset of asteroids with enough observations. One of our aims was to test the reliability of the models with respect to the number of data points and to check the consistency of these models with independent data. Another aim was to produce new asteroid models to enlarge the sample of asteroids with known spin and shape. Methods. We used the lightcurve inversion method to scan the period and pole parameter space to create final shape models that best reproduce the observed data. To search for the sidereal rotation period, we also used a simpler model of a geometrically scattering triaxial ellipsoid. Results. By processing about 5400 asteroids with at least 10 observations in DR2, we derived models for 173 asteroids, 129 of which are new. Models of the remaining asteroids were already known from the inversion of independent data, and we used them for verification and error estimation. We also compared the formally best rotation periods based on Gaia data with those derived from dense lightcurves. Conclusions. We show that a correct rotation period can be determined even when the number of observations N is less than 20, but the rate of false solutions is high. For N > 30, the solution of the inverse problem is often successful and the parameters are likely to be correct in most cases. These results are very promising because the final Gaia catalogue should contain photometry for hundreds of thousands of asteroids, typically with several tens of data points per object, which should be sufficient for reliable spin reconstruction.


2010 ◽  
Vol 6 (S273) ◽  
pp. 298-302
Author(s):  
Hari Om Vats ◽  
Satish Chandra

AbstractThe coronal sidereal rotation rate as a function of latitude for each year, extending from 1992 to 2001 for soft X-ray images and from 1998 - 2005 for radio images are obtained. The present analysis reveals that the equatorial rotation rate of the corona is comparable to the photosphere and the chromosphere, However, at the higher latitudes, the corona rotation quite differently than the photosphere and chromosphere. The latitude differential obtained by both radio and X-ray images is quite variable throughout the period of the study. The equatorial rotation period seems to vary almost systematically with sunspot numbers which indicates its dependence on the phases of the solar activity cycle.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Tsung-Ching Chen ◽  
Jiann-Shing Lih ◽  
Tien-Tang Chang ◽  
Chih-Hung Yang ◽  
Ming-Chi Lu ◽  
...  

We utilize sidereal rotation period expressions to calculate the sun’s rotation period via sunspot observation. From the well-known astronomical sites, we collected sunspot diagrams for 14 months, from January 2013 to February 2014, to analyze, compare, and implement statistical research. In addition to acquiring the average angular rate of the movement of sunspots, we found that even the same number of sunspots moved at different angular rates, and generally the life of larger sunspots is longer than 10 days. Therefore the larger sunspots moved around the back of the sun, and a handful of relatively smaller sunspots disappeared within a few days. The results show that the solar rotation period varied with the latitude. However, if we take the average of the sunspots at high and low latitudes, we find that the calculated value is very close to the accredited values.


Solar Physics ◽  
1995 ◽  
Vol 159 (2) ◽  
pp. 393-398 ◽  
Author(s):  
D. Roša ◽  
R. Brajša ◽  
B. Vršnak ◽  
H. Wöhl

2020 ◽  
Vol 492 (4) ◽  
pp. 5391-5398
Author(s):  
Jaidev Sharma ◽  
Brajesh Kumar ◽  
Anil K Malik ◽  
Hari Om Vats

ABSTRACT We report on the variability of the rotation periods of solar coronal layers with respect to temperature (or height). For this purpose, we have used observations from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamics Observatory (SDO) space mission of National Aeronautics and Space Administration (NASA). The images used are at wavelengths of 94, 131, 171, 193, 211 and 335 Å during the period from 2012–2018. Analysis of solar full-disc images obtained at these wavelengths by AIA is carried out using the flux modulation method. 17 rectangular strips/bins at equal intervals of 10° (extending from 80°S to 80°N) are selected to extract a time series of extreme ultraviolet (EUV) intensity variations to obtain the autocorrelation coefficient. The peak of the Gaussian fit to the first secondary maximum in the autocorrelogram gives the synodic rotation period. Our analysis shows differential rotation with respect to latitude as well as temperature (or height). In the present study, we find that the sidereal rotation periods of different coronal layers decrease with increasing temperature (or height). The average sidereal rotation period at the lowest temperature (∼600 000 K) corresponding to AIA 171-Å, which originates from the upper transition region/quiet corona, is 27.03 days. The sidereal rotation period decreases with temperature (or height) to 25.47 days at a higher temperature (∼10 million K), corresponding to the flaring regions of the solar corona as seen in AIA 131-Å observations.


2021 ◽  
Vol 502 (4) ◽  
pp. 5603-5611
Author(s):  
Eddie Ross ◽  
William J Chaplin ◽  
Steven J Hale ◽  
Rachel Howe ◽  
Yvonne P Elsworth ◽  
...  

ABSTRACT We have used very high-cadence (sub-minute) observations of the solar mean magnetic field (SMMF) from the Birmingham Solar Oscillations Network (BiSON) to investigate the morphology of the SMMF. The observations span a period from 1992 to 2012, and the high-cadence observations allowed the exploration of the power spectrum up to frequencies in the mHz range. The power spectrum contains several broad peaks from a rotationally modulated (RM) component, whose linewidths allowed us to measure, for the first time, the lifetime of the RM source. There is an additional broadband, background component in the power spectrum which we have shown is an artefact of power aliasing due to the low fill of the data. The sidereal rotation period of the RM component was measured as 25.23 ± 0.11 d and suggests that the signal is sensitive to a time-averaged latitude of ∼12°. We have also shown the RM lifetime to be 139.6 ± 18.5 d. This provides evidence to suggest that the RM component of the SMMF is connected to magnetic flux concentrations (MFCs) and active regions (ARs) of magnetic flux, based both on its lifetime and location on the solar disc.


1993 ◽  
Vol 20 (23) ◽  
pp. 2711-2714 ◽  
Author(s):  
A. Lecacheux ◽  
Ph. Zarka ◽  
M. D. Desch ◽  
D. R. Evans

1994 ◽  
Vol 144 ◽  
pp. 139-141 ◽  
Author(s):  
J. Rybák ◽  
V. Rušin ◽  
M. Rybanský

AbstractFe XIV 530.3 nm coronal emission line observations have been used for the estimation of the green solar corona rotation. A homogeneous data set, created from measurements of the world-wide coronagraphic network, has been examined with a help of correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1947 to 1991.The values of the synodic rotation period obtained for this epoch for the whole range of latitudes and a latitude band ±30° are 27.52±0.12 days and 26.95±0.21 days, resp. A differential rotation of green solar corona, with local period maxima around ±60° and minimum of the rotation period at the equator, was confirmed. No clear cyclic variation of the rotation has been found for examinated epoch but some monotonic trends for some time intervals are presented.A detailed investigation of the original data and their correlation functions has shown that an existence of sufficiently reliable tracers is not evident for the whole set of examinated data. This should be taken into account in future more precise estimations of the green corona rotation period.


Sign in / Sign up

Export Citation Format

Share Document