scholarly journals Tendon-Sheath Mechanisms in Flexible Membrane Wing Mini-UAVs: Control and Performance

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Tegoeh Tjahjowidodo ◽  
Shian Lee

Flexible membrane wings (FMWs) are known for two inherent advantages, that is, adaptability to gusty airflow as the wings can flex according to the gust load to reduce the effective angle of attack and the ability to be folded for compact storage purposes. However, the maneuverability of UAV with FMWs is rather limited as it is impossible to install conventional ailerons. The maneuver relies only on the rudders. Some applications utilize torque rods to warp the wings, but this approach makes the FMW become unfoldable. In this research, we proposed the application of a tendon-sheath mechanism to manipulate the wing shape of UAV. Tendon-sheath mechanism is relatively flexible; thus, it can also be folded together with the wings. However, its severe nonlinearity in its dynamics makes the wing warping difficult to control. To compensate for the nonlinearity, a dedicated adaptive controller is designed and implemented. The proposed approach is validated experimentally in a wind tunnel facility with imitated gusty condition and subsequently tested in a real flight condition. The results demonstrate a stable and robust wing warping actuation, while the adaptive washout capability is also validated. Accurate wing warping is achieved and the UAV is easily controlled in a real flight test.

2017 ◽  
Vol 85 ◽  
pp. 252-266 ◽  
Author(s):  
Shian Lee ◽  
Tegoeh Tjahjowidodo ◽  
Hsuchew Lee ◽  
Benedict Lai

Author(s):  
Md. Akhtar khan ◽  
Chinmaya padhy ◽  
Ch. Sanjay

An experimental aerodynamic analysis is performed to obtain aerodynamic characteristics and performance of a blended wing-body aircraft (BWB) using Low Speed Wind Tunnel. The BWB design concept is a revolutionary way of understanding the hike of fuel cost, increase in air travelers and environmental concern. Recognizing the potential of the aircraft an experimental analysis is conducted on BWB to understand aerodynamic performance parameters like lift coefficient (CL), drag coefficient (CD) and the Lift-to-Drag (L/D) ratio .The aluminium BWB model is manufactured using CNC machine and is tested in Wind tunnel at different angle of attack varying from 0° to 16° at speed of 12 m/s ,25 m/s and 35 m/s velocity. The present BWB UAV design has achieved an unprecedented capability in terms of sustainability of flight at high angle of attack, low parasite drag coefficient and decent maximum lift coefficient. This study indicates some significant benefits for the BWB relative to the conventional aircraft configuration. KEYWORDS: Blended Wing Body (BWB), Aerodynamics, Unmanned Aerial Vehicle (UAV), Wind Tunnel


2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
Iskandar Shah Ishak ◽  
Muhammad Fitri Mougamadou Zabaroulla

Experimental aerodynamic investigations remain the subject of interest in rotorcraft community since the flow around the helicopter is dominated by complex aerodynamics and flow interaction phenomena. The objective of this study is to determine the aerodynamic drag characteristics of helicopter horizontal tail by conducting wind tunnel tests. To fulfil the objective, three of the most common helicopter horizontal tail configurations namely Forward Stabilizer, Low-aft Stabilizer and T-tail Stabilizer, were fabricated as a simplified scaled-down wind tunnel model mated with a standard ellipsoidal fuselage. The test wind speed for this experimental work was 30 m/s, determined from Reynolds sweep, which was corresponding to Reynolds number of 2.8 x 105. Wind tunnel tests were performed at variations angle of attack ranging from -15O to 15O with 5O interval. The results tell that at zero yaw and zero pitch angles, Forward Stabilizer contributed the least drag coefficient at 0.277 implying the configuration could be the best for cruising flight segment. Contrarily to T-tail Stabilizer, this configuration contributed the most drag coefficient at 0.303, which was 9% higher than the former. The T-tail Stabilizer was also found to be the most sensitive to the change of angle of attack where the drag was drastically increased up to 131.35% at -15O angle of attack compares to at zero angle of attack. These findings had successfully testified that the type of stabilizer configuration does significantly influencing the aerodynamic drag characteristics of helicopter. Subsequently, the selection of stabilizer must wisely be done to have the best aerodynamic efficiency and performance for the helicopter. 


Author(s):  
Chenhui Yu ◽  
Fei Liao ◽  
Haibo Ji ◽  
Wenhua Wu

With the increasing requirement of Reynolds number simulation in wind tunnel tests, the cryogenic wind tunnel is considered as a feasible method to realize high Reynolds number. Characteristic model-based adaptive controller design method is introduced to flow field control problem of the cryogenic wind tunnel. A class of nonlinear multi-input multi-output (MIMO) system is given for theoretical research that is related to flow field control of the cryogenic wind tunnel. The characteristic model in the form of second-order time-varying difference equations is provided to represent the system. A characteristic model-based adaptive controller is also designed correspondingly. The stability analysis of the closed loop system composed of the characteristic model or the exact discrete-time model and the proposed controller is investigated respectively. Numerical simulation is presented to illustrate the effectiveness of this control method. The modeling and control problem based on characteristic model method for a class of MIMO system are studied and first applied to the cryogenic wind tunnel control field.


Sign in / Sign up

Export Citation Format

Share Document