scholarly journals A Framework for Scalable TSV Assignment and Selection in Three-Dimensional Networks-on-Chips

VLSI Design ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Amir Charif ◽  
Alexandre Coelho ◽  
Nacer-Eddine Zergainoh ◽  
Michael Nicolaidis

3D integration can greatly benefit future many-cores by enabling low-latency three-dimensional Network-on-Chip (3D-NoC) topologies. However, due to high cost, low yield, and frequent failures of Through-Silicon Via (TSV), 3D-NoCs are most likely to include only a few vertical connections, resulting in incomplete topologies that pose new challenges in terms of deadlock-free routing and TSV assignment. The routers of such networks require a way to locate the nodes that have vertical connections, commonly known as elevators, and select one of them in order to be able to reach other layers when necessary. In this paper, several alternative TSV selection strategies requiring a constant amount of configurable bits per router are introduced. Each proposed solution consists of a configuration algorithm, which provides each router with the necessary information to locate the elevators, and a routing algorithm, which uses this information at runtime to route packets to an elevator. Our algorithms are compared by simulation to highlight the advantages and disadvantages of each solution under various scenarios, and hardware synthesis results demonstrate the scalability of the proposed approach and its suitability for cost-oriented designs.

Author(s):  
Khadidja Gaffour ◽  
Mohammed Kamel Benhaoua ◽  
Abou El Hassan Benyamina ◽  
Amit Kumar Singh

2013 ◽  
Vol 22 (04) ◽  
pp. 1350016 ◽  
Author(s):  
MICHAEL O. AGYEMAN ◽  
ALI AHMADINIA ◽  
ALIREZA SHAHRABI

Three-dimensional Network-on-Chip (3D NoC) architectures have gained a lot of popularity to solve the on-chip communication delays of next generation System-on-Chip (SoC) systems. However, the vertical interconnects of 3D NoC are expensive and complex to manufacture. Also, 3D router architecture consumes more power and occupies more area per chip floorplan compared to a 2D router. Hence, more efficient architectures should be designed. In this paper, we propose area efficient and low power 3D heterogeneous NoC architectures, which combines both the power and performance benefits of 2D routers and 3D NoC-bus hybrid router architectures in 3D NoC architectures. Experimental results show a negligible penalty (less than 5%) in average packet latency of the proposed heterogeneous 3D NoC architectures compared to typical homogeneous 3D NoCs, while the heterogeneity provides power and area efficiency of up to 61% and 19.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document