scholarly journals Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jiahang Wang ◽  
Xiaodong Wang ◽  
Wenli Xu ◽  
Cheng Lu ◽  
Wenxiu Dong ◽  
...  

This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV) to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.




2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ruizhong Jiang ◽  
Jianchun Xu ◽  
Zhaobo Sun ◽  
Chaohua Guo ◽  
Yulong Zhao

A mathematical model of multistage fractured horizontal well (MsFHW) considering stimulated reservoir volume (SRV) was presented for tight oil reservoirs. Both inner and outer regions were assumed as single porosity media but had different formation parameters. Laplace transformation method, point source function integration method, superposition principle, Stehfest numerical algorithm, and Duhamel’s theorem were used comprehensively to obtain the semianalytical solution. Different flow regimes were divided based on pressure transient analysis (PTA) curves. According to rate transient analysis (RTA), the effects of related parameters such as SRV radius, storativity ratio, mobility ratio, fracture number, fracture half-length, and fracture spacing were analyzed. The presented model and obtained results in this paper enrich the performance analysis models of MsFHW considering SRV.



ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2589-2600
Author(s):  
Weiyao Zhu ◽  
Yunfeng Liu ◽  
Zhongxing Li ◽  
Ming Yue ◽  
Debin Kong


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2724 ◽  
Author(s):  
Long Ren ◽  
Wendong Wang ◽  
Yuliang Su ◽  
Mingqiang Chen ◽  
Cheng Jing ◽  
...  

There are multiporosity media in tight oil reservoirs after stimulated reservoir volume (SRV) fracturing. Moreover, multiscale flowing states exist throughout the development process. The fluid flowing characteristic is different from that of conventional reservoirs. In terms of those attributes of tight oil reservoirs, considering the flowing feature of the dual-porosity property and the fracture network system based on the discrete-fracture model (DFM), a mathematical flow model of an SRV-fractured horizontal well with multiporosity and multipermeability media was established. The numerical solution was solved by the finite element method and verified by a comparison with the analytical solution and field data. The differences of flow regimes between triple-porosity, dual-permeability (TPDP) and triple-porosity, triple-permeability (TPTP) models were identified. Moreover, the productivity contribution degree of multimedium was analyzed. The results showed that for the multiporosity flowing states, the well bottomhole pressure drop became slower, the linear flow no longer arose, and the pressure wave arrived quickly at the closed reservoir boundary. The contribution ratio of the matrix system, natural fracture system, and network fracture system during SRV-fractured horizontal well production were 7.85%, 43.67%, and 48.48%, respectively in the first year, 14.60%, 49.23%, and 36.17%, respectively in the fifth year, and 20.49%, 46.79%, and 32.72%, respectively in the 10th year. This study provides a theoretical contribution to a better understanding of multiscale flow mechanisms in unconventional reservoirs.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pin Jia ◽  
Defeng Wu ◽  
Hengfei Yin ◽  
Zhuang Li ◽  
Linsong Cheng ◽  
...  

Fractured horizontal wells have been widely used to develop unconventional oil and gas reservoirs. In previous studies, most studies on the transient pressure behavior of multistage horizontal wells were based on the assumption of single porosity medium, in which the coupling relationship of natural fractures and artificial fractures was not taken into account or artificial fractures were assumed to be infinitely conductive. In this paper, the fracture is finite conductive, which means that there is flow resistance in the fracture. Based on point-source method and superposition principle, a transient model for multistage fractured horizontal wells, which considers the couple of fracture flow and reservoir seepage, is built and solved with the Laplace transformation. The transient pressure behavior in multistage fractured horizontal wells is discussed, and effects of influence factors are analyzed. The result of this article can be used to identify the response characteristic of fracture conductivity to pressure and pressure differential and provide theoretical basis for effective development of tight oil reservoirs. The findings of this study can help for better understanding of transient pressure behavior of multistage fractured horizontal wells with finite conductivity in tight oil reservoirs.



Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5857
Author(s):  
Siyu Liu ◽  
Shengchun Xiong ◽  
Dingwei Weng ◽  
Peng Song ◽  
Rou Chen ◽  
...  

At present, the existing deliverability evaluation models mainly consider the impact of specific factors on production, and the description of the complex fracture network structure primarily remains at the stage of an ideal dual-pore medium with uniform distribution. However, this cannot reflect the actual fracture network structure and fluid flow law of fractured horizontal wells. Thus, in this paper, a non-uniform fracture network structure is proposed considering the influence of the threshold pressure gradient and stress sensitivity characteristics on the production performance of horizontal wells. The stress sensitivity and the fractal theory are combined to characterize the permeability of the complex fracture network, and a three-zone compound unsteady deliverability model for staged fractured horizontal wells in tight oil reservoirs is successfully developed. Laplace transformation, perturbation theory, and numerical inversion are applied to obtain the semi-analytical solution of the proposed deliverability model. The reliability and accuracy of the analytical solution are verified by the classical tri-linear flow model and an oil field example. The effects of related influential parameters on the production of horizontal wells are analyzed. The deliverability evaluation method proposed in this paper can provide a theoretical basis for formulating rational development technology policies for tight oil reservoirs.



Sign in / Sign up

Export Citation Format

Share Document