scholarly journals A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-pu Yang

Consumers’ opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers’ preference. However, how to identify and improve the reliability of consumers’ Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers’ opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers’ opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers’ evaluation opinions toward design alternatives according to Kansei indexes.

2019 ◽  
Vol 18 (03) ◽  
pp. 833-866 ◽  
Author(s):  
Mi Li ◽  
Huan Chen ◽  
Xiaodong Wang ◽  
Ning Zhong ◽  
Shengfu Lu

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.


2011 ◽  
Vol 383-390 ◽  
pp. 5744-5750
Author(s):  
Xi Zhen Wang ◽  
Yan Li ◽  
Gang Hu Cheng

A PSO Algorithm with Team Spirit Inertia weight (TSWPSO) is presented based on the study of the effect of inertia weight on Standard Particle Swarm Optimization (SPSO). Due to the theory of group in organization psychology, swarm is divided into multiple sub-swarms and search is run in a number of different sub-swarms which are parallel performed. Try to find or modify a curve which is compatible with optimized object within many inertia weight decline curves, in order to balance the global and local explorations ability in particle swarm optimization and to avoid the premature convergence problem effectively. The testes by five classical functions show that, TSWPSO has a better performance in both the convergence rate and the precision.


2012 ◽  
Vol 239-240 ◽  
pp. 1291-1297 ◽  
Author(s):  
Hai Sheng Qin ◽  
Deng Yue Wei ◽  
Jun Hui Li ◽  
Lei Zhang ◽  
Yan Qiang Feng

A new particle swarm optimization (PSO) algorithm (a PSO with Variety Factor, VFPSO) based on the PSO was proposed. Compared with the previous algorithm, the proposed algorithm is to update the Variety Factor and to improve the inertia weight of the PSO. The target of the improvement is that the new algorithm could go on enhancing the robustness as before and should reduce the risk of premature convergence. The simulation experiments show that it has great advantages of convergence property over some other modified PSO algorithms, and also avoids algorithm being trapped in local minimum effectively. So it can avoid the phenomenon of premature convergence.


Author(s):  
I. I. Aina ◽  
C. N. Ejieji

In this paper, a new metaheuristic algorithm named refined heuristic intelligence swarm (RHIS) algorithm is developed from an existing particle swarm optimization (PSO) algorithm by introducing a disturbing term to the velocity of PSO and modifying the inertia weight, in which the comparison between the two algorithms is also addressed.


2012 ◽  
Vol 195-196 ◽  
pp. 1060-1065
Author(s):  
Chang Yuan Jiang ◽  
Shu Guang Zhao ◽  
Li Zheng Guo ◽  
Chuan Ji

Based on the analyzing inertia weight of the standard particle swarm optimization (PSO) algorithm, an improved PSO algorithm is presented. Convergence condition of PSO is obtained through solving and analyzing the differential equation. By the experiments of four Benchmark function, the results show the performance of S-PSO improved more clearly than the standard PSO and random inertia weight PSO. Theoretical analysis and simulation experiments show that the S-PSO is efficient and feasible.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Xie ◽  
Jie-Sheng Wang ◽  
Hai-Bo Wang

The brushless director current (DC) motor is a new type of mechatronic motor that has been developed rapidly with the development of power electronics technology and the emergence of new permanent magnet materials. Based on the speed regulation characteristics, speed regulation strategy, and mathematical model of brushless DC motor, a parameter optimization method of proportional-integral (PI) controller on speed regulation for the brushless DC motor based on particle swarm optimization (PSO) algorithm with variable inertia weights is proposed. The parameters of PI controller are optimized by PSO algorithm with five inertia weight adjustment strategies (linear descending inertia weight, linear differential descending inertia weight, incremental-decremented inertia weight, nonlinear descending inertia weight with threshold, and nonlinear descending inertia weight with control factor). The effectiveness of the proposed method is verified by the simulation experiments and the related simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Shouwen Chen ◽  
Zhuoming Xu ◽  
Yan Tang ◽  
Shun Liu

Particle swarm optimization algorithm (PSO) is a global stochastic tool, which has ability to search the global optima. However, PSO algorithm is easily trapped into local optima with low accuracy in convergence. In this paper, in order to overcome the shortcoming of PSO algorithm, an improved particle swarm optimization algorithm (IPSO), based on two forms of exponential inertia weight and two types of centroids, is proposed. By means of comparing the optimization ability of IPSO algorithm with BPSO, EPSO, CPSO, and ACL-PSO algorithms, experimental results show that the proposed IPSO algorithm is more efficient; it also outperforms other four baseline PSO algorithms in accuracy.


2005 ◽  
Vol 2005 (3) ◽  
pp. 257-279 ◽  
Author(s):  
M. Senthil Arumugam ◽  
M. V. C. Rao

This paper presents several novel approaches of particle swarm optimization (PSO) algorithm with new particle velocity equations and three variants of inertia weight to solve the optimal control problem of a class of hybrid systems, which are motivated by the structure of manufacturing environments that integrate process and optimal control. In the proposed PSO algorithm, the particle velocities are conceptualized with the local best (orpbest) and global best (orgbest) of the swarm, which makes a quick decision to direct the search towards the optimal (fitness) solution. The inertia weight of the proposed methods is also described as a function of pbest and gbest, which allows the PSO to converge faster with accuracy. A typical numerical example of the optimal control problem is included to analyse the efficacy and validity of the proposed algorithms. Several statistical analyses including hypothesis test are done to compare the validity of the proposed algorithms with the existing PSO technique, which adopts linearly decreasing inertia weight. The results clearly demonstrate that the proposed PSO approaches not only improve the quality but also are more efficient in converging to the optimal value faster.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Prabha Umapathy ◽  
C. Venkataseshaiah ◽  
M. Senthil Arumugam

This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO). The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW), a time-varying inertia weight (TVIW), and global-local best inertia weight (GLbestIW), are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.


Sign in / Sign up

Export Citation Format

Share Document