scholarly journals A Multiple Kernel Learning Model Based on p-Norm

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jinshan Qi ◽  
Xun Liang ◽  
Rui Xu

By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM classification accuracy has been a hot topic in the SVM research society for several years. However, most MK learning (MKL) methods employ L1-norm constraint on the kernel combination weights, which forms a sparse yet nonsmooth solution for the kernel weights. Alternatively, the Lp-norm constraint on the kernel weights keeps all information in the base kernels. Nonetheless, the solution of Lp-norm constraint MKL is nonsparse and sensitive to the noise. Recently, some scholars presented an efficient sparse generalized MKL (L1- and L2-norms based GMKL) method, in which L1  L2 established an elastic constraint on the kernel weights. In this paper, we further extend the GMKL to a more generalized MKL method based on the p-norm, by joining L1- and Lp-norms. Consequently, the L1- and L2-norms based GMKL is a special case in our method when p=2. Experiments demonstrated that our L1- and Lp-norms based MKL offers a higher accuracy than the L1- and L2-norms based GMKL in the classification, while keeping the properties of the L1- and L2-norms based on GMKL.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wenjia Niu ◽  
Kewen Xia ◽  
Baokai Zu ◽  
Jianchuan Bai

Unlike Support Vector Machine (SVM), Multiple Kernel Learning (MKL) allows datasets to be free to choose the useful kernels based on their distribution characteristics rather than a precise one. It has been shown in the literature that MKL holds superior recognition accuracy compared with SVM, however, at the expense of time consuming computations. This creates analytical and computational difficulties in solving MKL algorithms. To overcome this issue, we first develop a novel kernel approximation approach for MKL and then propose an efficient Low-Rank MKL (LR-MKL) algorithm by using the Low-Rank Representation (LRR). It is well-acknowledged that LRR can reduce dimension while retaining the data features under a global low-rank constraint. Furthermore, we redesign the binary-class MKL as the multiclass MKL based on pairwise strategy. Finally, the recognition effect and efficiency of LR-MKL are verified on the datasets Yale, ORL, LSVT, and Digit. Experimental results show that the proposed LR-MKL algorithm is an efficient kernel weights allocation method in MKL and boosts the performance of MKL largely.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 794
Author(s):  
Alessio Martino ◽  
Enrico De Santis ◽  
Alessandro Giuliani ◽  
Antonello Rizzi

Multiple kernel learning is a paradigm which employs a properly constructed chain of kernel functions able to simultaneously analyse different data or different representations of the same data. In this paper, we propose an hybrid classification system based on a linear combination of multiple kernels defined over multiple dissimilarity spaces. The core of the training procedure is the joint optimisation of kernel weights and representatives selection in the dissimilarity spaces. This equips the system with a two-fold knowledge discovery phase: by analysing the weights, it is possible to check which representations are more suitable for solving the classification problem, whereas the pivotal patterns selected as representatives can give further insights on the modelled system, possibly with the help of field-experts. The proposed classification system is tested on real proteomic data in order to predict proteins’ functional role starting from their folded structure: specifically, a set of eight representations are drawn from the graph-based protein folded description. The proposed multiple kernel-based system has also been benchmarked against a clustering-based classification system also able to exploit multiple dissimilarities simultaneously. Computational results show remarkable classification capabilities and the knowledge discovery analysis is in line with current biological knowledge, suggesting the reliability of the proposed system.


2021 ◽  
Author(s):  
Shervin Rahimzadeh Arashloo

The paper addresses the one-class classification (OCC) problem and advocates a one-class multiple kernel learning (MKL) approach for this purpose. To this aim, based on the Fisher null-space one-class classification principle, we present a multiple kernel learning algorithm where an $\ell_p$-norm constraint ($p\geq1$) on kernel weights is considered. We cast the proposed one-class MKL task as a min-max saddle point Lagrangian optimisation problem and propose an efficient method to solve it. An extension of the proposed one-class MKL approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common kernel weights. <br>An extensive assessment of the proposed method on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.<br>


2021 ◽  
Author(s):  
Shervin Rahimzadeh Arashloo

The paper addresses the one-class classification (OCC) problem and advocates a one-class multiple kernel learning (MKL) approach for this purpose. To this aim, based on the Fisher null-space one-class classification principle, we present a multiple kernel learning algorithm where an $\ell_p$-norm constraint ($p\geq1$) on kernel weights is considered. We cast the proposed one-class MKL task as a min-max saddle point Lagrangian optimisation problem and propose an efficient method to solve it. An extension of the proposed one-class MKL approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common kernel weights. <br>An extensive assessment of the proposed method on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.<br>


2017 ◽  
Vol 13 (8) ◽  
pp. 1608-1618 ◽  
Author(s):  
Md. Al Mehedi Hasan ◽  
Shamim Ahmad ◽  
Md. Khademul Islam Molla

An efficient multi-label classifier for identifying human phosphorylated proteins has been developed by introducing multiple kernel learning based support vector machines.


This article presented in the context of 2D global facial recognition, using Gabor Wavelet's feature extraction algorithms, and facial recognition Support Vector Machines (SVM), the latter incorporating the kernel functions: linear, cubic and Gaussian. The models generated by these kernels were validated by the cross validation technique through the Matlab application. The objective is to observe the results of facial recognition in each case. An efficient technique is proposed that includes the mentioned algorithms for a database of 2D images. The technique has been processed in its training and testing phases, for the facial image databases FERET [1] and MUCT [2], and the models generated by the technique allowed to perform the tests, whose results achieved a facial recognition of individuals over 96%.


Author(s):  
Alina Lazar ◽  
Bradley A. Shellito

Support Vector Machines (SVM) are powerful tools for classification of data. This article describes the functionality of SVM including their design and operation. SVM have been shown to provide high classification accuracies and have good generalization capabilities. SVM can classify linearly separable data as well as nonlinearly separable data through the use of the kernel function. The advantages of using SVM are discussed along with the standard types of kernel functions. Furthermore, the effectiveness of applying SVM to large, spatial datasets derived from Geographic Information Systems (GIS) is also described. Future trends and applications are also discussed – the described extracted dataset contains seven independent variables related to urban development plus a class label which denotes the urban areas versus the rural areas. This large dataset, with over a million instances really proves the generalization capabilities of the SVM methods. Also, the spatial property allows experts to analyze the error signal.


2014 ◽  
Vol 511-512 ◽  
pp. 467-474
Author(s):  
Jun Tu ◽  
Cheng Liang Liu ◽  
Zhong Hua Miao

Feature selection plays an important role in terrain classification for outdoor robot navigation. For terrain classification, the image data usually have a large number of feature dimensions. The better selection of features usually results in higher labeling accuracy. In this work, a novel approach for terrain perception using Importance Factor based I-Relief algorithm and Feature Weighted Support Vector Machines (IFIR-FWSVM) is put forward. Firstly, the weight of each feature for classification is computed by using Importance Factor based I-Relief algorithm (IFIR) and the irrelevant features are eliminated. Then the weighted features are used to compute the kernel functions of SVM and trained the classifier. Finally, the trained SVM is employed to predict the terrain label in the far-field regions. Experimental results based on DARPA datasets show that the proposed method IFIR-FWSVM is superior over traditional SVM.


Sign in / Sign up

Export Citation Format

Share Document