scholarly journals Efficient Technique for Facial Image Recognition With Support Vector Machines in 2D Images With Cross-validation in Matlab

This article presented in the context of 2D global facial recognition, using Gabor Wavelet's feature extraction algorithms, and facial recognition Support Vector Machines (SVM), the latter incorporating the kernel functions: linear, cubic and Gaussian. The models generated by these kernels were validated by the cross validation technique through the Matlab application. The objective is to observe the results of facial recognition in each case. An efficient technique is proposed that includes the mentioned algorithms for a database of 2D images. The technique has been processed in its training and testing phases, for the facial image databases FERET [1] and MUCT [2], and the models generated by the technique allowed to perform the tests, whose results achieved a facial recognition of individuals over 96%.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yao Huimin

With the development of cloud computing and distributed cluster technology, the concept of big data has been expanded and extended in terms of capacity and value, and machine learning technology has also received unprecedented attention in recent years. Traditional machine learning algorithms cannot solve the problem of effective parallelization, so a parallelization support vector machine based on Spark big data platform is proposed. Firstly, the big data platform is designed with Lambda architecture, which is divided into three layers: Batch Layer, Serving Layer, and Speed Layer. Secondly, in order to improve the training efficiency of support vector machines on large-scale data, when merging two support vector machines, the “special points” other than support vectors are considered, that is, the points where the nonsupport vectors in one subset violate the training results of the other subset, and a cross-validation merging algorithm is proposed. Then, a parallelized support vector machine based on cross-validation is proposed, and the parallelization process of the support vector machine is realized on the Spark platform. Finally, experiments on different datasets verify the effectiveness and stability of the proposed method. Experimental results show that the proposed parallelized support vector machine has outstanding performance in speed-up ratio, training time, and prediction accuracy.


Author(s):  
Alina Lazar ◽  
Bradley A. Shellito

Support Vector Machines (SVM) are powerful tools for classification of data. This article describes the functionality of SVM including their design and operation. SVM have been shown to provide high classification accuracies and have good generalization capabilities. SVM can classify linearly separable data as well as nonlinearly separable data through the use of the kernel function. The advantages of using SVM are discussed along with the standard types of kernel functions. Furthermore, the effectiveness of applying SVM to large, spatial datasets derived from Geographic Information Systems (GIS) is also described. Future trends and applications are also discussed – the described extracted dataset contains seven independent variables related to urban development plus a class label which denotes the urban areas versus the rural areas. This large dataset, with over a million instances really proves the generalization capabilities of the SVM methods. Also, the spatial property allows experts to analyze the error signal.


2014 ◽  
Vol 511-512 ◽  
pp. 467-474
Author(s):  
Jun Tu ◽  
Cheng Liang Liu ◽  
Zhong Hua Miao

Feature selection plays an important role in terrain classification for outdoor robot navigation. For terrain classification, the image data usually have a large number of feature dimensions. The better selection of features usually results in higher labeling accuracy. In this work, a novel approach for terrain perception using Importance Factor based I-Relief algorithm and Feature Weighted Support Vector Machines (IFIR-FWSVM) is put forward. Firstly, the weight of each feature for classification is computed by using Importance Factor based I-Relief algorithm (IFIR) and the irrelevant features are eliminated. Then the weighted features are used to compute the kernel functions of SVM and trained the classifier. Finally, the trained SVM is employed to predict the terrain label in the far-field regions. Experimental results based on DARPA datasets show that the proposed method IFIR-FWSVM is superior over traditional SVM.


2004 ◽  
Vol 13 (04) ◽  
pp. 791-800 ◽  
Author(s):  
HOLGER FRÖHLICH ◽  
OLIVIER CHAPELLE ◽  
BERNHARD SCHÖLKOPF

The problem of feature selection is a difficult combinatorial task in Machine Learning and of high practical relevance, e.g. in bioinformatics. Genetic Algorithms (GAs) offer a natural way to solve this problem. In this paper we present a special Genetic Algorithm, which especially takes into account the existing bounds on the generalization error for Support Vector Machines (SVMs). This new approach is compared to the traditional method of performing cross-validation and to other existing algorithms for feature selection.


2014 ◽  
Vol 644-650 ◽  
pp. 4314-4318
Author(s):  
Xin You Wang ◽  
Ya Li Ning ◽  
Xi Ping He

In order to solve the problem of the conventional methods operated directly in the image, difficult to obtain good results because they are poor in high dimension performance. In this paper, a new method was proposed, which use the Least Squares Support Vector Machines in image segmentation. Furthermore, the parameters of kernel functions are also be optimized by Particle Swarm Optimization (PSO) algorithm. The practical application in various of standard data sets and color image segmentation experiment. The results show that, LS-SVM can use a variety of features in image, the experiments have achieved good results of image segmentation, and the time needed for segmentation is greatly reduced than standard SVM.


Sign in / Sign up

Export Citation Format

Share Document