scholarly journals The Robust Consensus of a Noisy Deffuant-Weisbuch Model

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jiangbo Zhang ◽  
Yiyi Zhao

We construct a new opinion formation of the Deffuant-Weisbuch model with the interference of the outer noise, where there are finite n agents and the evolution is discrete-time. The opinion interaction occurs by one randomly chosen pair at each time step. The difference to the original Deffuant-Weisbuch model is that communications of any selected pairs will be affected by noises. The aim of this paper is to study the robust consensus of this noisy Deffuant-Weisbuch model. We first define the noise strength as the maximum noise absolute value. We will then show that when the noise strength is less than a certain threshold, this noisy model will achieve T-robust consensus when t is sufficiently large; next we prove that the noisy model achieves robust consensus with a positive probability; finally, we demonstrate these results and provide numerical relations among the noise strength and some model parameters.

Author(s):  
Xin Wang ◽  
Edwin E. Yaz ◽  
Susan C. Schneider ◽  
Yvonne I. Yaz

A novel H2–H∞ State Dependent Riccati Equation control approach is presented for providing a generalized control framework to discrete time nonlinear system. By solving a generalized Riccati Equation at each time step, the nonlinear state feedback control solution is found to satisfy mixed performance criteria guaranteeing quadratic optimality with inherent stability property in combination with H∞ type of disturbance attenuation. Two numerical techniques to compute the solution of the resulting Riccati equation are presented: The first one is based on finding the steady state solution of the difference equation at every step and the second one is based on finding the minimum solution of a linear matrix inequality. The effectiveness of the proposed techniques is demonstrated by simulations involving the control of an inverted pendulum on a cart, a benchmark mechanical system.


2012 ◽  
Vol 44 (3) ◽  
pp. 430-440 ◽  
Author(s):  
Ian G. Littlewood ◽  
Barry F. W. Croke

The effects of data time-step on the accuracy of calibrated parameters in a discrete-time conceptual rainfall–streamflow model are reviewed and further investigated. A quick-flow decay time constant of 19.9 hr, calibrated for the 10.6 km2 Wye at Cefn Brwyn using daily data, massively overestimates a reference value of 3.76 hr calibrated using hourly data (an inaccuracy of 16.1 hr or 429%). About 42 and 58% of the inaccuracy are accounted for by loss of information in the effective rainfall and streamflow data, respectively. A slow-flow decay time constant is inaccurate by about +111%, of which about 94 and 17 percentage points (85 and 15% of the absolute inaccuracy) are due to loss of information in the effective rainfall and streamflow data, respectively. Discrete-time rainfall–streamflow model parameter inaccuracy caused by data time-step effects is discussed in terms of its implications for parameter regionalisation (including database aspects) and catchment-scale process studies.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


1995 ◽  
Vol 117 (4) ◽  
pp. 597-600 ◽  
Author(s):  
K. C. Gupta ◽  
R. Ma

The necessary and sufficient conditions for the full input rotatability in a spherical four-bar linkage are proved. The direct criterion is: for all twist angles α in the range [0, π], the excess (deficit) of the sum of the frame and input twist angles over (from) π should, in absolute value, be greater than that for the coupler and follower twist angles; the difference between the follower and input twist angles, in absolute value, should be greater than that for the coupler and follower twist angles. Application of the direct criterion to full rotatability of other links are discussed and some variations in the form of the criterion are developed.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


Author(s):  
R. Ma ◽  
K. C. Gupta

Abstract The necessary and sufficient conditions for the full input rotatability in a spherical four bar linkage are proved. The direct criterion is: for all twist angles α in the range [0, π], the excess (deficit) of the sum of the frame and input twist angles over (from) π should, in absolute value, be greater than that for the coupler and follower twist angles; the difference between the follower and input twist angles, in absolute value, should be greater than that for the coupler and follower twist angles. Application of the direct criterion to full rotatability of other links are discussed and some variations in the form of the criterion are developed.


2018 ◽  
Vol 15 (9) ◽  
pp. 2909-2930 ◽  
Author(s):  
Sebastian Lienert ◽  
Fortunat Joos

Abstract. A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
A. Corberán-Vallet ◽  
F. J. Santonja ◽  
M. Jornet-Sanz ◽  
R.-J. Villanueva

We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine immunization program in order to reduce the impact of this disease, which remains a public health’s great concern. Under this scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the population and the inherent stochasticity in the transmission of the disease. As shown in a comparative study, these assumptions are fundamental to describe properly the evolution of the disease. The Bayesian analysis of the model allows us to calculate the posterior distribution of the model parameters and the posterior predictive distribution of chickenpox incidence, which facilitates the computation of point forecasts and prediction intervals.


2021 ◽  
Author(s):  
Yingruo Fan ◽  
Jacqueline CK Lam ◽  
Victor On Kwok Li

<div> <div> <div> <p>Facial emotions are expressed through a combination of facial muscle movements, namely, the Facial Action Units (FAUs). FAU intensity estimation aims to estimate the intensity of a set of structurally dependent FAUs. Contrary to the existing works that focus on improving FAU intensity estimation, this study investigates how knowledge distillation (KD) incorporated into a training model can improve FAU intensity estimation efficiency while achieving the same level of performance. Given the intrinsic structural characteristics of FAU, it is desirable to distill deep structural relationships, namely, DSR-FAU, using heatmap regression. Our methodology is as follows: First, a feature map-level distillation loss was applied to ensure that the student network and the teacher network share similar feature distributions. Second, the region-wise and channel-wise relationship distillation loss functions were introduced to penalize the difference in structural relationships. Specifically, the region-wise relationship can be represented by the structural correlations across the facial features, whereas the channel-wise relationship is represented by the implicit FAU co-occurrence dependencies. Third, we compared the model performance of DSR-FAU with the state-of-the-art models, based on two benchmarking datasets. Our proposed model achieves comparable performance with other baseline models, though requiring a lower number of model parameters and lower computation complexities. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document