scholarly journals Optimal Rational Approximations by the Modified Fourier Basis

2018 ◽  
Vol 2018 ◽  
pp. 1-21
Author(s):  
Arnak V. Poghosyan ◽  
Tigran K. Bakaryan

We consider convergence acceleration of the modified Fourier expansions by rational trigonometric corrections which lead to modified-trigonometric-rational approximations. The rational corrections contain some unknown parameters and determination of their optimal values for improved pointwise convergence is the main goal of this paper. The goal was accomplished by deriving the exact constants of the asymptotic errors of the approximations with further elimination of the corresponding main terms by appropriate selection of those parameters. Numerical experiments outline the convergence improvement of the optimal rational approximations compared to the expansions by the modified Fourier basis.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Arnak Poghosyan ◽  
Lusine Poghosyan

We introduce a procedure for convergence acceleration of the quasi-periodic trigonometric interpolation by application of rational corrections which leads to quasi-periodic-rational trigonometric interpolation. Rational corrections contain unknown parameters whose determination is important for realization of interpolation. We investigate the pointwise convergence of the resultant interpolation for special choice of the unknown parameters and derive the exact constants of the main terms of asymptotic errors.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Arnak Poghosyan

We consider the convergence acceleration of the Krylov-Lanczos interpolation by rational correction functions and investigate convergence of the resultant parametric rational-trigonometric-polynomial interpolation. Exact constants of asymptotic errors are obtained in the regions away from discontinuities, and fast convergence of the rational-trigonometric-polynomial interpolation compared to the Krylov-Lanczos interpolation is observed. Results of numerical experiments confirm theoretical estimates and show how the parameters of the interpolations can be determined in practice.


Author(s):  
A. M. Bagirov ◽  
A. M. Rubinov ◽  
J. Yearwood

The feature selection problem involves the selection of a subset of features that will be sufficient for the determination of structures or clusters in a given dataset and in making predictions. This chapter presents an algorithm for feature selection, which is based on the methods of optimization. To verify the effectiveness of the proposed algorithm we applied it to a number of publicly available real-world databases. The results of numerical experiments are presented and discussed. These results demonstrate that the algorithm performs well on the datasets considered.


2014 ◽  
Vol 22 (01) ◽  
pp. 1-28 ◽  
Author(s):  
SHICHENG HU ◽  
KESEN BI ◽  
QUANXU GE ◽  
MINGCHAO LI ◽  
XIN XIE ◽  
...  

In order to ameliorate the lung defects caused by missed juxtapleural nodules in lung segmentation on chest computed tomography (CT) images, we develop a Newton–Cotes-based smoothing algorithm (NCBS) which is used as a preliminary step to remove noises as many as possible. Next considering the crescent outline features of the lung, we propose a curvature-based correction algorithm (CBC) for the determination of the correction threshold. The application of the proposed algorithms is demonstrated in the process of lung segmentation and the experimental results on 25 real datasets are illustrated. Furthermore, some experiments are conducted to investigate the effects of the key parameters in CBC on the performances of lung segmentation so as to decide their optimal values. In addition, the CBC is compared with other methods analytically and experimentally. The overall results show that our proposed algorithm in lung segmentation excels the related methods on the capability of automatic selection of the correction threshold, as well as the performances of accuracy, efficiency and feasibility.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Imam Setiadi ◽  
Dinda Rita K. Hartaja

Selection of the appropriate composition desalination units can be done with a variety of method approaches, one of the method is the Analytic Hierarchy Process. In determining the desalination unit with AHP method to consider is setting a goal, an alternative criteria and pairwise comparison. Research for the determination of the exact composition of the desalination unit in order to achieve sustainable drinking water suppy in coastal areas and small islands has been conducted. The results of the study are as follows, the energy demand of 50.83%, operator costs of 26.64%, maintenance costs of 14.13% and chemical requirement 8.4%. For an alternative composition desalination unit of RO 10 m3 / day is the best alternative composition with value of 59.61%, the composition of the next alternative is RO 20 m3/ day of 30.40% and the last alternative of the desalination unit composition is RO 120 m3/ day of 09.99%.Key words : Desalination, Mukti Stage Flash Composition, AHP


Kerntechnik ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. 118-121
Author(s):  
T. Heinrich ◽  
L. Funke ◽  
M. Köhler ◽  
U.-K. Schkade ◽  
F. Ullrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document