scholarly journals Optimal Design of Fault-Tolerant Controller for an Electric Power Steering System with Sensor Failures Using Genetic Algorithm

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xue Liu ◽  
Hui Pang ◽  
Yuting Shang ◽  
Wen Wu

This paper focuses on the fault-tolerant control (FTC) problem for an electric power steering (EPS) system subjected to stochastic sensor failures, and a novel fault-tolerant controller is proposed based on the genetic algorithm (GA). A mathematical model of the EPS system with sensor failures is first established, and the state feedback control law is solved by using linear quadratic regulator techniques to stabilize the closed-loop control system. Then, the dynamic response errors of the EPS system with and without sensor faults are chosen as the optimization objective function. Furthermore, the appropriate weighting matrices are evaluated to obtain the optimal fault control law by using GA. Finally, simulation results are presented to illustrate the effectiveness of the proposed control strategy.

ICTE 2015 ◽  
2015 ◽  
Author(s):  
Chen Huang ◽  
Long Chen ◽  
Kaiding Zhang ◽  
Haobin Jiang ◽  
Chaochun Yuan

Author(s):  
Manel Allous ◽  
Kais Mrabet ◽  
Nadia Zanzouri

Electric power steering is an advanced steering system that uses an electric motor to improve steering comfort of the car. As a result, the failures in the electric motor can lead to additional fault modes and cause damage of the electric power steering system performance. Hence, to ensure the stability of this latter, the present paper proposes a new method to reconfigure the fault control. A novelty approach of fast fault estimation based on adaptive observer is also proposed. Moreover, to guarantee optimal and fast control, a fault-tolerant control based on inverse bond graph modeling is designed to construct the behavior of the nominal system. The simulation and the experimental results on a real electric power steering system reveal the importance of the control strategy and show that the proposed approach works as intended.


1991 ◽  
Vol 113 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Luen-Woei Liou ◽  
Asok Ray

A state feedback control law has been derived in Part I [1] of this two-part paper on the basis of an augmented plant model [2, 3, 4] that accounts for the randomly varying delays induced by the network in Integrated Communication and Control Systems (ICCS). The control algorithm was formulated as a linear quadratic regulator problem and then solved using the principle of dynamic programming and optimality. This paper, which is the second of two parts, presents (i) a numerical procedure for synthesizing the control parameters and (ii) results of simulation experiments for verification of the above control law using the flight dynamic model of an advanced aircraft. This two-part paper is concluded with recommendations for future work.


2011 ◽  
Vol 464 ◽  
pp. 86-89 ◽  
Author(s):  
Da Chong Wang ◽  
Chen Long ◽  
Chen Huang

In order to ensure the safe and reliable operation of electric power steering(eps) system,the fault-tolerant control theory is used to design the feedback control for eps system and the control rule for sensor failure in the linear continuous system is described.On the basis of riccati equation,the design method and steps of fault-tolerant controller are given from the view of optimal control.By taking electric power steering of a certain mini car as research object,the simulation calculation is carried out.By applying such fault-tolerant controller for the eps system,the simulation results show that the system has no sensitiveness to the sensor faults,and the method can satisfy the demand of fault-tolerant control.


Sign in / Sign up

Export Citation Format

Share Document